Spectral set

In operator theory, a set X\subseteq\mathbb{C} is said to be a spectral set for a (possibly unbounded) linear operator T on a Banach space if the spectrum of T is in X and von-Neumann's inequality holds for T on X - i.e. for all rational functions r(x) with no poles on X

\left\Vert r(T) \right\Vert \leq \left\Vert r \right\Vert_{X} = \sup \left\{\left\vert r(x) \right\vert : x\in X \right\}

This concept is related to the topic of analytic functional calculus of operators. In general, one wants to get more details about the operators constructed from functions with the original operator as the variable.

This article is issued from Wikipedia - version of the Wednesday, September 26, 2012. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.