Sodium naphthalenide

Sodium naphthalenide
Names
Preferred IUPAC name
Sodium naphthalenide
Systematic IUPAC name
Sodium naphthalen-1-ide
Identifiers
ChemSpider 10004279 N
EC Number 222-460-3
Jmol interactive 3D Image
PubChem 11829632
Properties
C10H8Na
Molar mass 151.16 g·mol−1
Related compounds
Other anions
Sodium cyclopentadienide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Sodium naphthalenide, also known as sodium naphthalide, is an organic salt with the formula Na+C10H8. In the research laboratory, it is used as a reductant in the synthesis of organic, organometallic, and inorganic chemistry. It has not been isolated as a solid, but it is usually prepared fresh before use.[1]

Preparation and properties

The alkali metal naphthalenides are prepared by stirring the metal with naphthalene in an ethereal solvent, usually as tetrahydrofuran or dimethoxyethane. The resulting salt is dark green.[2][3][4] The anion is a radical, giving a strong EPR signal near g = 2.0, with a reduction potential near -2.5 V vs NHE. Its deep green color arises from absorptions centered at 463, 735 nm.[1]

The anion is strongly basic, and a typical degradation pathway involves reaction with water and related protic sources. These reactions afford dihydronaphthalene:

2 NaC10H8 + 2 H2O → C10H10 + C10H8 + 2 NaOH

Related reagents

For some synthetic operations, sodium naphthalenide is excessively reducing (too negative), in which case milder reductants are selected. Larger rings give milder reductants. Sodium acenaphthenide is milder by about 0.75 V.

The corresponding lithium salt, lithium naphthalenide, is also known.

A solution of lithium naphthalenide, a related compound, in tetrahydrofuran

References

  1. 1 2 N. G. Connelly and W. E. Geiger, "Chemical Redox Agents for Organometallic Chemistry", Chem. Rev. 1996, 96, 877-910. doi:10.1021/cr940053x
  2. Corey, E. J.; Gross, Andrew W. (1993). "tert-Butyl-tert-octylamine". Org. Synth.; Coll. Vol. 8, p. 93
  3. Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, p. 139, ISBN 0-471-84997-9
  4. Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p. 111. ISBN 0-08-022057-6.
This article is issued from Wikipedia - version of the Friday, November 20, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.