Snub octaoctagonal tiling

Snub octaoctagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.3.8.3.8
Schläfli symbols{8,4}
sr{8,8}
Wythoff symbol| 8 8 2
Coxeter diagram
Symmetry group[8,8]+, (882)
[8+,4], (8*2)
DualOrder-8-8 floret hexagonal tiling
PropertiesVertex-transitive

In geometry, the snub octaoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{8,8}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

Symmetry

A higher symmetry coloring can be constructed from [8,4] symmetry as s{8,4}, . In this construction there is only one color of octagon.

Related polyhedra and tiling

Uniform octaoctagonal tilings
Symmetry: [8,8], (*882)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8 V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
= = = =
=
=
=
h{8,8} s{8,8} hr{8,8} s{8,8} h{8,8} hrr{8,8} sr{8,8}
Alternation duals
V(4.8)8 V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8 V(4.8)8 V46 V3.3.8.3.8
4n2 symmetry mutations of snub tilings: 3.3.n.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracompact
222 322 442 552 662 772 882 2
Snub
figures
Config. 3.3.2.3.2 3.3.3.3.3 3.3.4.3.4 3.3.5.3.5 3.3.6.3.6 3.3.7.3.7 3.3.8.3.8 3.3..3.
Gyro
figures
Config. V3.3.2.3.2 V3.3.3.3.3 V3.3.4.3.4 V3.3.5.3.5 V3.3.6.3.6 V3.3.7.3.7 V3.3.8.3.8 V3.3..3.

References

See also

Wikimedia Commons has media related to Uniform tiling 3-3-8-3-8.

External links

This article is issued from Wikipedia - version of the Wednesday, May 13, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.