SCO1

SCO1 cytochrome c oxidase assembly protein

PDB rendering based on 1wp0.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols SCO1 ; SCOD1
External IDs OMIM: 603644 MGI: 106362 HomoloGene: 3374 GeneCards: SCO1 Gene
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 6341 52892
Ensembl ENSG00000133028 ENSMUSG00000069844
UniProt O75880 Q5SUC9
RefSeq (mRNA) NM_004589 NM_001040026
RefSeq (protein) NP_004580 NP_001035115
Location (UCSC) Chr 17:
10.67 – 10.7 Mb
Chr 11:
67.05 – 67.07 Mb
PubMed search

Protein SCO1 homolog, mitochondrial is a protein that in humans is encoded by the SCO1 gene.[1][2] Mutations in both SCO1 and SCO2 are associated with distinct clinical phenotypes as well as tissue-specific cytochrome c oxidase deficiency. SCO1 localizes predominantly to blood vessels, whereas SCO2 is barely detectable. Expression of SCO2 is also much higher than that of SCO1 in muscle tissue, while SCO1 is expressed at higher levels in liver tissue than SCO2.[3]

Function

Mammalian cytochrome c oxidase (COX) catalyzes the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. In yeast, 2 related COX assembly genes, SCO1 and SCO2 (synthesis of cytochrome c oxidase), enable subunits 1 and 2 to be incorporated into the holoprotein. This gene is the human homolog to the yeast SCO1 gene.[2]

Clinical relevance

Mutation in the SCO1 gene are a cause of mitochondrial complex IV deficiency also known as cytochrome c oxidase deficiency. This disorder affects the mitochondrial respiratory chain resulting in a variety of symptoms, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. A subset of patients also suffer from Leigh syndrome.[4][5]

Model organisms

Model organisms have been used in the study of SCO1 function. A conditional knockout mouse line, called Sco1tm1a(KOMP)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty two tests were carried out on mutant mice and two significant abnormalities were observed.[7] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; no additional significant abnormalities were observed in these animals.[7]

References

  1. Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M (Dec 1998). "Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain". Genomics 54 (3): 494–504. doi:10.1006/geno.1998.5580. PMID 9878253.
  2. 1 2 "Entrez Gene: SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast)".
  3. Brosel S, Yang H, Tanji K, Bonilla E, Schon EA (Nov 2010). "Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease". The American Journal of Pathology 177 (5): 2541–8. doi:10.2353/ajpath.2010.100229. PMC 2966810. PMID 20864674.
  4. Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J, Lockitch G, Winge DR, Rustin P, Horvath R, Shoubridge EA (Jan 2007). "The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis". Cell Metabolism 5 (1): 9–20. doi:10.1016/j.cmet.2006.12.001. PMID 17189203.
  5. Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rötig A (Nov 2000). "Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy". American Journal of Human Genetics 67 (5): 1104–9. doi:10.1016/S0002-9297(07)62940-1. PMC 1288552. PMID 11013136.
  6. "Salmonella infection data for Sco1". Wellcome Trust Sanger Institute.
  7. 1 2 3 4 Gerdin, AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  8. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. "International Knockout Mouse Consortium".
  10. "Mouse Genome Informatics".
  11. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  12. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  13. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  14. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

  • Shoubridge EA (2001). "Cytochrome c oxidase deficiency". American Journal of Medical Genetics 106 (1): 46–52. doi:10.1002/ajmg.1378. PMID 11579424. 
  • Schulze M, Rödel G (Mar 1989). "Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene". Molecular & General Genetics 216 (1): 37–43. doi:10.1007/BF00332228. PMID 2543907. 
  • Schulze M, Rödel G (Mar 1988). "SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II". Molecular & General Genetics 211 (3): 492–8. doi:10.1007/BF00425706. PMID 2835635. 
  • Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (Apr 1996). "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474. 
  • Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (Apr 1997). "Large-scale concatenation cDNA sequencing". Genome Research 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174. 
  • Paret C, Ostermann K, Krause-Buchholz U, Rentzsch A, Rödel G (Mar 1999). "Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization". FEBS Letters 447 (1): 65–70. doi:10.1016/S0014-5793(99)00266-5. PMID 10218584. 
  • Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA (Nov 1999). "Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene". Nature Genetics 23 (3): 333–7. doi:10.1038/15513. PMID 10545952. 
  • Horvath R, Lochmüller H, Stucka R, Yao J, Shoubridge EA, Kim SH, Gerbitz KD, Jaksch M (Sep 2000). "Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency". Biochemical and Biophysical Research Communications 276 (2): 530–3. doi:10.1006/bbrc.2000.3495. PMID 11027508. 
  • Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (Sep 2004). "Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase". Human Molecular Genetics 13 (17): 1839–48. doi:10.1093/hmg/ddh197. PMID 15229189. 
  • Williams JC, Sue C, Banting GS, Yang H, Glerum DM, Hendrickson WA, Schon EA (Apr 2005). "Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein". The Journal of Biological Chemistry 280 (15): 15202–11. doi:10.1074/jbc.M410705200. PMID 15659396. 
  • Horng YC, Leary SC, Cobine PA, Young FB, George GN, Shoubridge EA, Winge DR (Oct 2005). "Human Sco1 and Sco2 function as copper-binding proteins". The Journal of Biological Chemistry 280 (40): 34113–22. doi:10.1074/jbc.M506801200. PMID 16091356. 
  • Cobine PA, Pierrel F, Leary SC, Sasarman F, Horng YC, Shoubridge EA, Winge DR (May 2006). "The P174L mutation in human Sco1 severely compromises Cox17-dependent metallation but does not impair copper binding". The Journal of Biological Chemistry 281 (18): 12270–6. doi:10.1074/jbc.M600496200. PMID 16520371. 
  • Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Mangani S, Martinelli M, Palumaa P, Wang S (Jun 2006). "A hint for the function of human Sco1 from different structures". Proceedings of the National Academy of Sciences of the United States of America 103 (23): 8595–600. doi:10.1073/pnas.0601375103. PMC 1482625. PMID 16735468. 
  • Leary SC, Sasarman F, Nishimura T, Shoubridge EA (Jun 2009). "Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1". Human Molecular Genetics 18 (12): 2230–40. doi:10.1093/hmg/ddp158. PMID 19336478. 
  • Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J (May 2009). "Loss of function of Sco1 and its interaction with cytochrome c oxidase". American Journal of Physiology. Cell Physiology 296 (5): C1218–26. doi:10.1152/ajpcell.00564.2008. PMID 19295170. 
This article is issued from Wikipedia - version of the Sunday, November 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.