Runcic 5-cubes


5-cube

Runcic 5-cube
=

5-demicube
=

Runcicantic 5-cube
=
Orthogonal projections in B5 Coxeter plane

In six-dimensional geometry, a runcic 5-cube or (runcic 5-demicube, runcihalf 5-cube) is a convex uniform 5-polytope. There are 2 runcic forms for the 5-cube. Runcic 5-cubes have half the vertices of runcinated 5-cubes.

Runcic 5-cube

Runcic 5-cube
Typeuniform 5-polytope
Schläfli symbol h3{4,3,3,3}
Coxeter-Dynkin diagram
4-faces42
Cells360
Faces880
Edges720
Vertices160
Vertex figure
Coxeter groupsD5, [32,1,1]
Propertiesconvex

Alternate names

Cartesian coordinates

The Cartesian coordinates for the 960 vertices of a runcic 5-cubes centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]

Related polytopes

It has half the vertices of the runcinated 5-cube, as compared here in the B5 Coxeter plane projections:


Runcic 5-cube

Runcinated 5-cube

Runcicantic 5-cube

Runcicantic 5-cube
Typeuniform 5-polytope
Schläfli symbol t0,1,2{3,32,1}
h3{4,33}
Coxeter-Dynkin diagram
4-faces42
Cells360
Faces1040
Edges1200
Vertices480
Vertex figure
Coxeter groupsD5, [32,1,1]
Propertiesconvex

Alternate names

Cartesian coordinates

The Cartesian coordinates for the 480 vertices of a runcicantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±5,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]

Related polytopes

It has half the vertices of the runcicantellated 5-cube, as compared here in the B5 Coxeter plane projections:


Runcicantic 5-cube

Runcicantellated 5-cube

Related polytopes

This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 23 uniform 5-polytopes that can be constructed from the D5 symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.

Notes

  1. Klitzing, (x3o3o *b3x3o - sirhin)
  2. Klitzing, (x3x3o *b3x3o - girhin)

References

External links

This article is issued from Wikipedia - version of the Thursday, April 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.