Rodney S. Ruoff
Rodney S Ruoff | |
---|---|
Born | 1957 (age 57–58) |
Residence | Republic of Korea |
Nationality | USA |
Fields | Carbon and related materials |
Website Rodney S Ruoff |
Rodney S. "Rod" Ruoff (born 1957) is an American physical chemist and nanoscience researcher. He is one of the world experts on carbon materials including carbon nanostructures such as fullerenes, nanotubes, graphene, diamond, and has had pioneering discoveries on such materials and others. Ruoff received his B.S. in Chemistry from The University of Texas at Austin (1981) and his Ph.D. in Chemical Physics at the University of Illinois-Urbana (1988). After a Fulbright Fellowship at the MPI fuer Stroemungsforschung in Goettingen, Germany (1989) and postdoctoral work at the IBM T. J. Watson Research Center (1990–91), Ruoff became a staff scientist in the Molecular Physics Laboratory at SRI International (1991-1996).He is currently UNIST Distinguished Professor at the Ulsan National Institute of Science and Technology (UNIST), and the director of the Center for Multidimensional Carbon Materials (CMCM), an Institute for Basic Science (IBS) Center located at UNIST.
Research
Rod Ruoff and his research groups have made seminal contributions to developing new synthesis techniques and improving our understanding of properties of novel materials including nanostructures and 2D materials, especially novel carbon materials (graphene, diamond, nanotubes, sp3-sp2 hybrids, negative curvature carbon, carbon nanofoams, boron nitride allotropes, fullerenes, etc.). Some examples of pioneering studies, among others, include:(i) of the mechanics of C60,[1] and of nanotubes,[2][3][4][5][6][7][8][9][10][11] including pullout of inner shell with respect to outer shell of the nanotube,[12] and of a connection between mechanical deformation and structure on the one hand, and chemical reactivity on the other;[13][14](ii) of solubility phenomena of fullerenes, nanotubes, and graphene;[15][16][17][18][19][20](iii) of carbon-encapsulated metal nanoparticles;[21][22](iv) of patterned graphite and thus micromechanically exfoliated graphene-like flakes;[23][24](v) of scaled growth of graphene on copper and copper-nickel foils;[25][26][27][28][29][30][31][32](vi) of isotopically labeled graphites (graphite oxide) and graphene;[33][34][35][36](vii) of graphene oxide and reduced graphene oxide and composites and paper-like films composed of them;[37][38][39][40][41][42](viii) of the use of chemically modified graphene and graphite foam for electrode materials in electrical energy storage;[43][44][45][46][47](ix) of graphene as a support film for biological TEM;[48](x) of graphene as a protective coating against oxidation (and corrosion).[49] Ruoff provided some personal perspectives on graphene and new carbon materials ‘on the horizon’ in 2012.[50] As a graduate student at the University of Illinois-Urbana, Ruoff and colleagues published seminal papers on the structure of weakly bound clusters formed in supersonic jets,[51] and of relaxation processes in supersonic jets.[52]
His predictions with A. L. Ruoff about the mechanical response of fullerite under high pressure,[1] and his work with colleagues on the unique solvation phenomena of C60 in various solvent systems,[15][16] and of synthesis and structural characterization of supergiant fullerenes containing single crystal metal ‘encapsulates’,[21] have demonstrated to the scientific community the novel properties of closed-shell carbon structures. He also co-developed a new in-situ mechanical testing device for measuring the tensile response of bundles of SWCNTs and individual MWCNTs inside of a scanning electron microscope.[4][5][6][12] This work has yielded important insights into the mechanics and tribology of these systems, and suggested the possibility of very low friction linear bearings.[12] Similarly, Ruoff and collaborators were the first to use solubility parameters to rationalize the solubility of fullerenes,[15] of single-walled nanotubes,[18] and of chemically modified graphenes.[20] Furthermore, Rod is credited with first creating graphene by lithographic patterning to make single crystal graphite micropillars; he and his team achieved thereby single crystal multilayer graphene platelets.[23][24]
More recently, Ruoff and collaborators have demonstrated synthesis of large area monolayer graphene on copper foil by chemical vapor deposition,[25][27][28][29] for which relatively high carrier mobilities have been obtained, and subsequently have used isotopic labeling and micro-Raman mapping to map grains and grain boundaries in such atom thick layers and to elucidate growth mechanisms,[30] and studied their performance as transparent conductive electrodes.[26] Ruoff and his collaborators have also made a series of advances in novel composite systems comprising chemically modified graphene platelets.[38][40][41]
Ruoff and his team were the first to use graphene as electrodes of electrochemical capacitors, reporting on graphene supercapacitors in 2008.[43] Recently, Ruoff and his group reported on a new carbon, potentially having regions of ‘negative curvature carbon’ (NCC) with a remarkably high specific surface area of 3100 m² g−1, and atom-thick carbon sp2-bonded walls that define pores varying in diameter from about 0.6 to 5 nm. They showed that this type of porous carbon (‘a-MEGO’) works very well as an electrode material for double-layer supercapacitors, a very exciting advance.[44]
Rod has a Hirsch factor of 101.[53]
Positions
- UNIST Distinguished Professor of Chemistry and Materials Science and Engineering, Ulsan National Institute of Science and Technology (2014–present)
- Cockrell Family Regents Chair Professor, Mechanical Engineering, The University of Texas at Austin (2007–2013)
- Professor and John Evans Professor, Mechanical Engineering, Northwestern University (2000–2007)
- Associate Professor, Physics, Washington University (1996–2000)
- Staff Scientist, Molecular Physics Laboratory, SRI International (1991–1996)
- Postdoctoral researcher, IBM Thomas J. Watson Research Center (1990–1991)
- Postdoctoral researcher/Fulbright Fellow, Max Planck Institute fuer Stroemungsforschung (1989)
Awards and fellowships
- Turnbull Award Materials Research Society (2014)
- Materials Research Society Fellow (2013)
- American Association for the Advancement of Science (AAAS) Fellow (2012)
- American Physical Society Fellow (2011)
- Distinguished Chair Visiting Professor (2005–2007), Sungkyunkwan University Advanced Institute of Science and Technology (SAINT)
- Fulbright Fellow (1989)
External links
- "MRS F14 Turnbull Lecture given by Prof. Ruoff". www.youtube.com. Retrieved 2015-02-17.
- "Center for Multidimensional Carbon Materials (CMCM)". cmcm.ibs.re.kr. Retrieved 2015-02-13.
- "Prof. Rodney Ruoff". cmcm.ibs.re.kr. Retrieved 2015-02-13.
References
- 1 2 Ruoff, R. S.; Ruoff, A. L. (1991). "Is C60 stiffer than diamond?". Nature 350 (6320): 663. doi:10.1038/350663b0.
- ↑ Subramoney, S.; Ruoff, R. S.; Lorents, D. C.; Malhotra, R. (1993). "Radial single-layer nanotubes". Nature 366 (6456): 637. doi:10.1038/366637a0.
- ↑ Tersoff, J.; Ruoff, R. (1994). "Structural Properties of a Carbon-Nanotube Crystal". Physical Review Letters 73 (5): 676. doi:10.1103/PhysRevLett.73.676.
- 1 2 Yu, M.; Dyer, M. J.; Skidmore, G. D.; Rohrs, H. W.; Lu, X.; Ausman, K. D.; Ehr, J. R. V.; Ruoff, R. S. (1999). "Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope". Nanotechnology 10 (3): 244. doi:10.1088/0957-4484/10/3/304.
- 1 2 Yu, M.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. (2000). "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load". Science 287 (5453): 637–640. doi:10.1126/science.287.5453.637. PMID 10649994.
- 1 2 Yu, M. F.; Files, B.; Arepalli, S.; Ruoff, R. (2000). "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties". Physical Review Letters 84 (24): 5552–5555. Bibcode:2000PhRvL..84.5552Y. doi:10.1103/PhysRevLett.84.5552. PMID 10990992.
- ↑ Yu, M. F.; Kowalewski, T.; Ruoff, R. (2000). "Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force". Physical Review Letters 85 (7): 1456–9. doi:10.1103/PhysRevLett.85.1456. PMID 10970528.
- ↑ Yu, M. F.; Kowalewski, T.; Ruoff, R. (2001). "Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy". Physical Review Letters 86: 87. doi:10.1103/PhysRevLett.86.87.
- ↑ Yu, M. F.; Dyer, M. J.; Ruoff, R. S. (2001). "Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study". Journal of Applied Physics 89 (8): 4554. doi:10.1063/1.1356437.
- ↑ Xu, T. T.; Fisher, F. T.; Brinson, L. C.; Ruoff, R. S. (2003). "Bone-Shaped Nanomaterials for Nanocomposite Applications". Nano Letters 3 (8): 1135. doi:10.1021/Nl0343396.
- ↑ Ding, W.; Eitan, A.; Fisher, F. T.; Chen, X.; Dikin, D. A.; Andrews, R.; Brinson, L. C.; Schadler, L. S.; Ruoff, R. S. (2003). "Direct Observation of Polymer Sheathing in Carbon Nanotube−Polycarbonate Composites". Nano Letters 3 (11): 1593. doi:10.1021/Nl0345973.
- 1 2 3 Yu, M. F.; Yakobson, B. I.; Ruoff, R. S. (2000). "Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes". The Journal of Physical Chemistry B 104 (37): 8764. doi:10.1021/Jp002828d.
- ↑ Srivastava, D.; Brenner, D. W.; Schall, J. D.; Ausman, K. D.; Yu, M.; Ruoff, R. S. (1999). "Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry". The Journal of Physical Chemistry B 103 (21): 4330. doi:10.1021/Jp990882s.
- ↑ Ausman, K. D.; Rohrs, H. W.; Yu, M.; Ruoff, R. S. (1999). "Nanostressing and mechanochemistry". Nanotechnology 10 (3): 258. doi:10.1088/0957-4484/10/3/306.
- 1 2 3 Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. (1993). "Solubility of fullerene (C60) in a variety of solvents". The Journal of Physical Chemistry 97 (13): 3379. doi:10.1021/J100115a049.
- 1 2 Ruoff, R. S.; Malhotra, R.; Huestis, D. L.; Tse, D. S.; Lorents, D. C. (1993). "Anomalous solubility behaviour of C60". Nature 362 (6416): 140. doi:10.1038/362140a0.
- ↑ Korobov, M. V.; Mirakian, A. L.; Avramenko, N. V.; Valeev, E. F.; Neretin, I. S.; Slovokhotov, Y. L.; Smith, A. L.; Olofsson, G.; Ruoff, R. S. (1998). "C60·Bromobenzene Solvate: Crystallographic and Thermochemical Studies and Their Relationship to C60Solubility in Bromobenzene". The Journal of Physical Chemistry B 102 (19): 3712. doi:10.1021/Jp9804401.
- 1 2 Ausman, K. D.; Piner, R.; Lourie, O.; Ruoff, R. S.; Korobov, M. (2000). "Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes". The Journal of Physical Chemistry B 104 (38): 8911. doi:10.1021/Jp002555m.
- ↑ Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. (2008). "Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets". Chemistry of Materials 20 (21): 6592. doi:10.1021/Cm801932u.
- 1 2 Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. (2009). "Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents". Nano Letters 9 (4): 1593. doi:10.1021/Nl803798y.
- 1 2 Ruoff, R. S.; Lorents, D. C.; Chan, B.; Malhotra, R.; Subramoney, S. (1993). "Single Crystal Metals Encapsulated in Carbon Nanoparticles". Science 259 (5093): 346. doi:10.1126/science.259.5093.346.
- ↑ Subramoney, S.; Ruoff, R. S.; Lorents, D. C.; Chan, B.; Malhotra, R.; Dyer, M. J.; Parvin, K. (1994). "Magnetic separation of GdC2 encapsulated in carbon nanoparticles". Carbon 32 (3): 507. doi:10.1016/0008-6223(94)90173-2.
- 1 2 Lu, X.; Huang, H.; Nemchuk, N.; Ruoff, R. S. (1999). "Patterning of highly oriented pyrolytic graphite by oxygen plasma etching". Applied Physics Letters 75 (2): 193. doi:10.1063/1.124316.
- 1 2 Lu, X.; Yu, M.; Huang, H.; Ruoff, R. S. (1999). "Tailoring graphite with the goal of achieving single sheets". Nanotechnology 10 (3): 269. doi:10.1088/0957-4484/10/3/308.
- 1 2 Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. (2009). "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils". Science 324 (5932): 1312–1314. doi:10.1126/science.1171245. PMID 19423775.
- 1 2 Cai, W.; Zhu, Y.; Li, X.; Piner, R. D.; Ruoff, R. S. (2009). "Large area few-layer graphene/graphite films as transparent thin conducting electrodes". Applied Physics Letters 95 (12): 123115. doi:10.1063/1.3220807.
- 1 2 Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. (2009). "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes". Nano Letters 9 (12): 4359. doi:10.1021/Nl902623y.
- 1 2 Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.; Velamakanni, A.; Zhu, Y.; Fu, L.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S. (2010). "Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process". Nano Letters 10 (11): 4328. doi:10.1021/Nl101629g.
- 1 2 Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. (2011). "Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper". Journal of the American Chemical Society 133 (9): 2816. doi:10.1021/Ja109793s.
- 1 2 Chen, S.; Cai, W.; Piner, R. D.; Suk, J. W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R. S. (2011). "Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu–Ni Alloy Foils". Nano Letters 11 (9): 3519. doi:10.1021/Nl201699j.
- ↑ Wu, Y.; Chou, H.; Ji, H.; Wu, Q.; Chen, S.; Jiang, W.; Hao, Y.; Kang, J.; Ren, Y.; Piner, R. D.; Ruoff, R. S. (2012). "Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu–Ni Alloy Foils". ACS Nano 6 (9): 7731. doi:10.1021/Nn301689m.
- ↑ Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; Ramanarayan, H.; Magnuson, C. W.; Tutuc, E.; Yakobson, B. I.; McCarty, K. F.; Zhang, Y. -W.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R. S. (2013). "The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper". Science 342 (6159): 720. doi:10.1126/science.1243879.
- ↑ Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J.; Chen, D.; Ruoff, R. S. (2008). "Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide". Science 321 (5897): 1815. doi:10.1126/science.1162369.
- ↑ Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. (2009). "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling". Nano Letters 9 (12): 4268. doi:10.1021/Nl902515k.
- ↑ Casabianca, L. B.; Shaibat, M. A.; Cai, W. W.; Park, S.; Piner, R.; Ruoff, R. S.; Ishii, Y. (2010). "NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional13C Solid-State NMR and ab Initio Chemical Shift Calculations". Journal of the American Chemical Society 132 (16): 5672. doi:10.1021/Ja9030243.
- ↑ Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. (2012). "Thermal conductivity of isotopically modified graphene". Nature Materials 11 (3): 203. doi:10.1038/Nmat3207.
- ↑ Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. (2006). "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)". Journal of Materials Chemistry 16 (2): 155. doi:10.1039/B512799h.
- 1 2 Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. (2006). "Graphene-based composite materials". Nature 442 (7100): 282. doi:10.1038/Nature04969.
- ↑ Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. (2006). "Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets". Carbon 44 (15): 3342. doi:10.1016/j.carbon.2006.06.004.
- 1 2 Watcharotone, Supinda; Dikin, Dmitriy A.; Stankovich, Sasha; Piner, Richard; Jung, Inhwa; Dommett, Geoffrey H. B.; Evmenenko, Guennadi; Wu, Shang-En; Chen, Shu-Fang; Liu, Chuan-Pu; Nguyen, Sonbinh T.; Ruoff, Rodney S. (2007). "Graphene−Silica Composite Thin Films as Transparent Conductors". Nano Letters 7 (7): 1888–1892. doi:10.1021/Nl070477. PMID 17592880.
- 1 2 Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. (2007). "Preparation and characterization of graphene oxide paper". Nature 448 (7152): 457. doi:10.1038/Nature06016.
- ↑ Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. (2007). "Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets". Nano Letters 7 (12): 3569. doi:10.1021/Nl0714177.
- 1 2 Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. (2008). "Graphene-Based Ultracapacitors". Nano Letters 8 (10): 3498. doi:10.1021/Nl802558y.
- 1 2 Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. (2011). "Carbon-Based Supercapacitors Produced by Activation of Graphene". Science 332 (6037): 1537–1541. doi:10.1126/science.1200770. PMID 21566159.
- ↑ Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S. (2012). "Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors". Nano Letters 12 (4): 1806. doi:10.1021/Nl203903z.
- ↑ Ji, H.; Zhang, L.; Pettes, M. T.; Li, H.; Chen, S.; Shi, L.; Piner, R.; Ruoff, R. S. (2012). "Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes". Nano Letters 12 (5): 2446. doi:10.1021/Nl300528p.
- ↑ Tsai, W. Y.; Lin, R.; Murali, S.; Li Zhang, L.; McDonough, J. K.; Ruoff, R. S.; Taberna, P. L.; Gogotsi, Y.; Simon, P. (2013). "Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80°C". Nano Energy 2 (3): 403. doi:10.1016/j.nanoen.2012.11.006.
- ↑ Pantelic, R. S.; Suk, J. W.; Hao, Y.; Ruoff, R. S.; Stahlberg, H. (2011). "Oxidative Doping Renders Graphene Hydrophilic, Facilitating Its Use As a Support in Biological TEM". Nano Letters 11 (10): 4319. doi:10.1021/Nl202386p.
- ↑ Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S. Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J.; Park, J.; Ruoff, R. S. (2011). "Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy". ACS Nano 5 (2): 1321. doi:10.1021/Nn103028d.
- ↑ Ruoff, R. S. (2012). "Personal perspectives on graphene: New graphene-related materials on the horizon". MRS Bulletin 37 (12): 1314. doi:10.1557/Mrs.2012.278.
- ↑ Ruoff, R. S.; Emilssonl, T.; Klotsl, C.; Chuang, C.; Gutowsky, H. S. (1988). "Rotational spectrum and structure of the linear HCN trimer". J. Chem. Phys. 89 (1): 138. doi:10.1063/1.455515.
- ↑ Ruoff, R. S.; Klots, T. D.; Emilsson, T.; Gutowsky, H. S. (1990). "Relaxation of conformers and isomers in seeded supersonic jets of inert gases". The Journal of Chemical Physics 93 (5): 3142. doi:10.1063/1.458848.
- ↑ As determined from Web of Science May 17, 2015.