Risk perception

Risk perception is the subjective judgement that people make about the characteristics and severity of a risk. The phrase is most commonly used in reference to natural hazards and threats to the environment or health, such as nuclear power. Several theories have been proposed to explain why different people make different estimates of the dangerousness of risks. Three major families of theory have been developed: psychology approaches (heuristics and cognitive), anthropology/sociology approaches (cultural theory) and interdisciplinary approaches (social amplification of risk framework).

Early theories

The study of risk perception arose out of the observation that experts and lay people often disagreed about how risky various technologies and natural hazards were.

The mid 1960s saw the rapid rise of nuclear technologies and the promise for clean and safe energy. However, public perception shifted against this new technology. Fears of both longitudinal dangers to the environment and immediate disasters creating radioactive wastelands turned the public against this new technology. The scientific and governmental communities asked why public perception was against the use of nuclear energy when all the scientific experts were declaring how safe it really was. The problem, from the perspectives of the experts, was a difference between scientific facts and an exaggerated public perception of the dangers.[1]

A key early paper was written in 1969 by Chauncey Starr.[2] Starr used a revealed preference approach to find out what risks are considered acceptable by society. He assumed that society had reached equilibrium in its judgment of risks, so whatever risk levels actually existed in society were acceptable. His major finding was that people will accept risks 1,000 greater if they are voluntary (e.g. driving a car) than if they are involuntary (e.g. a nuclear disaster).

This early approach assumed that individuals behave rationally weighing information before making a decision. Individuals have exaggerated fears due to inadequate or incorrect information. Implied in this assumption is that additional information can help people understand true risk and hence lessen their opinion of danger.[1] While researchers in the engineering school did pioneer research in risk perception, by adapting theories from economics, it has little use in a practical setting. Numerous studies have rejected the belief that additional information, alone, will shift perceptions.[3]

Psychology approach

The psychology approach began with research in trying to understand how people process information. These early works maintain that people use cognitive heuristics in sorting and simplifying information which lead to biases in comprehension. Later work built on this foundation and became the psychometric paradigm. This approach identifies numerous factors responsible for influencing individual perceptions of risk, including dread, newness, stigma, and other factors.[4]

Research also shows that risk perceptions are influenced by the emotional state of the perceiver.[5] The valence theory of risk perception only differentiates between positive emotions, such as happiness and optimism, and negative ones, such as fear and anger. According to valence theory, positive emotions lead to optimistic risk perceptions whereas negative emotions influence a more pessimistic view of risk.[6]

Research also has found that, whereas risk and benefit tend to be positively correlated across hazardous activities in the world, they are negatively correlated in people's minds and judgements.[7]

Heuristics and biases

The earliest psychometric research was done by psychologists Daniel Kahneman and Amos Tversky, who performed a series of gambling experiments to see how people evaluated probabilities. Their major finding was that people use a number of heuristics to evaluate information. These heuristics are usually useful shortcuts for thinking, but they may lead to inaccurate judgments in some situations – in which case they become cognitive biases.

Another key finding was that the experts are not necessarily any better at estimating probabilities than lay people. Experts were often overconfident in the exactness of their estimates, and put too much stock in small samples of data.[8]

Cognitive Psychology

The majority of people in the public express a greater concern for problems which appear to possess an immediate effect on everyday life such as hazardous waste or pesticide-use than for long-term problems that may affect future generations such as climate change or population growth.[9] People greatly rely on the scientific community to assess the threat of environmental problems because they usually do not directly experience the effects of phenomena such as climate change. The exposure most people have to climate change has been impersonal; most people only have virtual experience though documentaries and news media in what may seem like a “remote” area of the world.[10] However, coupled with the population’s wait-and-see attitude, people do not understand the importance of changing environmentally destructive behaviors even when experts provide detailed and clear risks caused by climate change.[11]

Psychometric paradigm

Research within the psychometric paradigm turned to focus on the roles of affect, emotion, and stigma in influencing risk perception. Melissa Finucane and Paul Slovic have been among the key researchers here. These researchers first challenged Starr's article by examining expressed preference – how much risk people say they are willing to accept. They found that, contrary to Starr's basic assumption, people generally saw most risks in society as being unacceptably high. They also found that the gap between voluntary and involuntary risks was not nearly as great as Starr claimed.

Slovic and team found that perceived risk is quantifiable and predictable. People tend to view current risk levels as unacceptably high for most activities.[12] All things being equal, the greater people perceived a benefit, the greater the tolerance for a risk.[8] If a person derived pleasure from using a product, people tended to judge its benefits as high and its risks as low. If the activity was disliked, the judgments were opposite.[13] Research in psychometrics has proven that risk perception is highly dependent on intuition, experiential thinking, and emotions.

Psychometric research identified a broad domain of characteristics that may be condensed into three high order factors: 1) the degree to which a risk is understood, 2) the degree to which it evokes a feeling of dread, and 3) the number of people exposed to the risk. A dread risk elicits visceral feelings of terror, uncontrollable, catastrophe, inequality, and uncontrolled. An unknown risk is new and unknown to science. The more a person dreads an activity, the higher its perceived risk and the more that person wants the risk reduced.[8]

Environmental Psychology

In order to better address and understand the risk of complex environmental problems such as climate change, new interdisciplinary models of risk perception have been developed in recent years. For example, Helgeson, van der Linden and Chabay (2012) and van der Linden (2015) present a five factor model, where public risk perceptions of climate change are considered to be multidimensional, resulting from a combination of (1) cognitive, (2) emotional, (3) subconscious, (4) socio-cultural and (5) individual factors.[14][15] The model integrates insights from behavioral economics, cognitive psychology, cultural anthropology, the psychometric paradigm as well as the heuristics and biases approach.

Anthropology/sociology approach

The anthropology/sociology approach posits risk perceptions as produced by and supporting social institutions.[16] In this view, perceptions are socially constructed by institutions, cultural values, and ways of life.

Cultural theory

One line of the Cultural Theory of risk is based on the work of anthropologist Mary Douglas and political scientist Aaron Wildavsky first published in 1982.[17] In cultural theory, Douglas and Wildavsky outline four “ways of life” in a grid/group arrangement. Each way of life corresponds to a specific social structure and a particular outlook on risk. Grid categorizes the degree to which people are constrained and circumscribed in their social role. The tighter binding of social constraints limits individual negotiation. Group refers to the extent to which individuals are bounded by feelings of belonging or solidarity. The greater the bonds, the less individual choice are subject to personal control.[18] Four ways of life include: Hierarchical, Individualist, Egalitarian, and Fatalist.

Risk perception researchers have not widely accepted this version of cultural theory. Even Douglas says that the theory is controversial; it poses a danger of moving out of the favored paradigm of individual rational choice of which many researchers are comfortable.[19]

On the other hand, writers who drawn upon a broader cultural theory perspective have argued that risk-perception analysis helps understand the public response to terrorism in a way that goes far beyond 'rational choice'. As John Handmer and Paul James write:

In the area of embodied risk, people are not as fearful of themselves as perhaps they should be on the issues of illicit drug use, unsafe sex and so on. Yet with the compounding of both more abstract and more embodied risk this package appears to have met its goal to generate support for government policy. Fear of 'outsiders' and of a non-specific, invisible and uncontrollable threat was a powerful motivator in shaping perception.[20]

National Culture and Risk Survey

The First National Culture and Risk Survey of cultural cognition found that a person's worldview on the two social and cultural dimensions of "hierarchy-egalitarianism," and "individualism-solidarism" was predictive of their response to risk.[21]

Interdisciplinary approach

Social amplification of risk framework

The Social Amplification of Risk Framework (SARF), combines research in psychology, sociology, anthropology, and communications theory. SARF outlines how communications of risk events pass from the sender through intermediate stations to a receiver and in the process serve to amplify or attenuate perceptions of risk. All links in the communication chain, individuals, groups, media, etc., contain filters through which information is sorted and understood.

The framework attempts to explain the process by which risks are amplified, receiving public attention, or attenuated, receiving less public attention. The framework may be used to compare responses from different groups in a single event, or analyze the same risk issue in multiple events. In a single risk event, some groups may amplify their perception of risks while other groups may attenuate, or decrease, their perceptions of risk.

The main thesis of SARF states that risk events interact with individual psychological, social and other cultural factors in ways that either increase or decrease public perceptions of risk. Behaviors of individuals and groups then generate secondary social or economic impacts while also increasing or decreasing the physical risk itself.[22]

These ripple effects caused by the amplification of risk include enduring mental perceptions, impacts on business sales, and change in residential property values, changes in training and education, or social disorder. These secondary changes are perceived and reacted to by individuals and groups resulting in third-order impacts. As each higher-order impacts are reacted to, they may ripple to other parties and locations. Traditional risk analyses neglect these ripple effect impacts and thus greatly underestimate the adverse effects from certain risk events. Public distortion of risk signals provides a corrective mechanism by which society assesses a fuller determination of the risk and its impacts to such things not traditionally factored into a risk analysis.[23]

See also

External links

References

Notes

  1. 1 2 Douglas, Mary. Risk Acceptability According to the Social Sciences. Russell Sage Foundation, 1985.
  2. "Social Benefits versus Technological Risks". Science 165 (3899): 1232–1238. 1969. doi:10.1126/science.165.3899.1232.
  3. Freudenburg, William R. (1993). "Risk and Recreancy: Weber, the Division of Labor, and the Rationality of Risk Perceptions". Social Forces 71 (4): 909–932. doi:10.1093/sf/71.4.909.
  4. Tversky, Amos; Kahneman, Daniel (1974). "Judgment under Uncertainty: Heuristics and Biases". Science 185 (4157): 1124–1131. doi:10.1126/science.185.4157.1124. PMID 17835457.
  5. Bodenhausen, G.V. (1993). Emotions, arousal, and stereotypic judgments: A heuristic model of affect and stereotyping. In D.M. Mackie & D.L. Hamilton (Eds.), Affect, cognition, and stereotyping: Interactive processes in group perception (pp. 13-37). San Diego, CA: Academic Press.
  6. Lerner, JS; Keltner, D (2000). "Beyond valence: Toward a model of emotion-specific influences on judgment and choice". Cognition and Emotion 14: 473–493. doi:10.1080/026999300402763.
  7. Slovic, Paul (December 2006). "Risk Perception and Affect". Current Direction in Psychological Science 15 (6): 322–325. doi:10.1111/j.1467-8721.2006.00461.x. Retrieved Sep 14, 2014.
  8. 1 2 3 Slovic, Paul; Fischhoff, Baruch; Lichtenstein, Sarah (1982). "Why Study Risk Perception?". Risk Analysis 2 (2): 83–93. doi:10.1111/j.1539-6924.1982.tb01369.x.
  9. "Slimak & Dietz, 2006Koger" cited in Susan M., and Deborah Du Nann. Winter. The Psychology of Environmental Problems: Psychology for Sustainability. 3rd ed. New York: Psychology, 2010. 216-217
  10. Swim, Janet, Susan Clayton, Thomas Doherty, Robert Gifford, George Howard, Joseph Reser, Paul Stern, and Elke Weber. Psychology & Global Climate Change. Publication. American Psychological Association, 2010. Web. 10 Dec. 2010. <http://www.apa.org/science/about/publications/climate-change-booklet.pdf>.
  11. "Sterman, 2008" cited in Koger, Susan M., and Deborah Du Nann. Winter. The Psychology of Environmental Problems: Psychology for Sustainability. 3rd ed. New York: Psychology, 2010. 219
  12. Slovic, Paul, ed. The Perception of Risk. Earthscan, Virginia. 2000.
  13. Gregory, Robin; Mendelsohn, Robert (1993). "Perceived Risk, Dread, and Benefits". Risk Analysis 13 (3): 259–264. doi:10.1111/j.1539-6924.1993.tb01077.x.
  14. Helgeson, J., van der Linden, S., and Chabay, I. (2012)."The Role of Knowledge, Learning and Mental Models in Perceptions of Climate Change Related risks." In A. Wals & P.B. Corcoran (Eds.), Learning for sustainability in times of accelerating change (pp. 329-346). Wageningen Academic Publishers.
  15. van der Linden, S. (2015). The Social-Psychological Determinants of Climate Change Risk Perceptions: Towards a Comprehensive Model. Journal of Environmental Psychology, 41, 112-124.
  16. Wildavsky, Aaron; Dake, Karl (1990). "Theories of Risk Perception: Who Fears What and Why?". American Academy of Arts and Sciences (Daedalus) 119 (4): 41–60.
  17. Douglas, Mary and Aaron Wildavsky. Risk and Culture. University of California Press, 1982.
  18. Thompson, Michael, Richard Ellis, Aaron Wildavsky. Cultural theory. Westview Press, Boulder, Colorado, 1990.
  19. Douglas, Mary. Risk and Blame: Essays in Cultural theory. New York: Routledge, 1992.
  20. John Handmer and Paul James (2005). "Trust Us, and Be Scared: The Changing Nature of Contemporary Risk". Global Society 21 (1): 119–30.
  21. "First National Risk & Culture Study". The Cultural Cognition Project at Yale Law School. Retrieved July 21, 2012.
  22. Kasperson, Roger E.; Renn, Ortwin; Slovic, Paul; Brown, Halina; Emel, Jacque; Goble, Robert; Kasperson, Jeanne; Ratick, Samuel (1988). "The Social Amplification of Risk: A Conceptual Framework" (PDF). Risk Analysis 8 (2): 177–187. doi:10.1111/j.1539-6924.1988.tb01168.x.
  23. Kasperson, Jeanne X., Roger E. Kasperson. The Social Contours of Risk. Volume I: Publics, Risk Communication & the Social Amplification of Risk. Earthscan, Virginia. 2005
This article is issued from Wikipedia - version of the Monday, January 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.