Reduction of nitro compounds

The chemical reactions described as reduction of nitro compounds can be effected by many reagents and reaction conditions. Historically, the nitro group was one of the first functional groups to be reduced.

Alkyl and aryl nitro compounds behave differently. Thus, reduction conditions can be broadly classified by starting materials: aliphatic nitro compounds or aromatic nitro compounds. Secondary classifications are based upon reaction products.

Aliphatic nitro compounds

Reduction to hydrocarbons

Hydrodenitration (replacement of a nitro group with hydrogen) is difficult to achieve but can be effected by catalytic hydrogenation over platinum on silica gel at high temperatures.[1]

Reduction to amines

Aliphatic nitro compounds can be reduced to aliphatic amines by several reagents:

α,β-Unsaturated nitro compounds can be reduced to saturated amines by:

Reduction to hydroxylamines

Aliphatic nitro compounds can be reduced to aliphatic hydroxylamines using diborane.[7]

The reaction can also be carried out with zinc dust and ammonium chloride :

R-NO2 + 4 NH4Cl + 2 Zn → R-NH-OH + 2 ZnCl2 + 4 NH3 + H2O

Reduction to oximes

Nitro compounds are typically reduced to oximes using metal salts, such as stannous chloride[8] or chromium(II) chloride.[9] Additionally, catalytic hydrogenation using a controlled amount of hydrogen can generate oximes.[10]

Aromatic nitro compounds

Reduction to anilines

The reduction of nitroaromatics is conducted on an industrial scale.[11] Many methods for the production of anilines from aryl nitro compounds exist, such as:

Metal hydrides are typically not used to reduce aryl nitro compounds to anilines because they tend to produce azo compounds. (See below)

Reduction to hydroxylamines

Several methods for the production of aryl hydroxylamines from aryl nitro compounds exist:

Reduction to hydrazino compounds

Treatment of nitroarenes with excess zinc metal results in the formation of N,N'-diarylhydrazine.[22]

Reduction to azo compounds

Treatment of aromatic nitro compounds with metal hydrides gives good yields of azo compounds. For example, one could use:

Reduction to azoxy compounds

{{Aromatic compounds are reduced to azoxy compounds by using:

Na3AsO3 or glucose or NaOH

[24]}} C6H5NO2

References

  1. M. J. Guttieri and W. F. Maier (1984). "Selective cleavage of carbon-nitrogen bonds with platinum". J. Org. Chem. 49 (16): 2875–2880. doi:10.1021/jo00190a006.
  2. A. T. Nielsen (1962). "The Isomeric Dinitrocyclohexanes. II. Stereochemistry". J. Org. Chem. 27 (6): 1998–2001. doi:10.1021/jo01053a019.
  3. Dauben, Jr., H. J.; Ringold, H. J.; Wade, R. H.; Pearson, D. L.; Anderson, Jr., A. G. (1963). "Cycloheptanone". Org. Synth.; Coll. Vol. 4, p. 221
  4. Senkus, M. (1948). "Ind. Eng. Chem." 40: 506.
  5. A. S. Kende and J. S. Mendoza (1991). "Controlled reduction of nitroalkanes to alkyl hydroxylamines or amines by samarium diiodide". Tetrahedron Letters 32 (14): 1699–1702. doi:10.1016/S0040-4039(00)74307-3.
  6. A. Burger, M. L. Stein and J. B. Clements (1957). "Some Pyridylnitroalkenes, Nitroalkanols, and Alkylamines". J. Org. Chem. 22 (2): 143–144. doi:10.1021/jo01353a010.
  7. H. Feuer, R. S. Bartlett, B. F. Vincent and R. S. Anderson (1965). "Diborane Reduction of Nitro Salts. A New Synthesis of N-Monosubstituted Hydroxylamines". J. Org. Chem. 30 (9): 2880–2882. doi:10.1021/jo01020a002.
  8. Braun, V. J.; Sobecki, W. (1911). "Über primäre Dinitro-, Nitronitrit- und Dialdoxim-Verbindungen der Fettreihe". Ber. 44 (3): 2526–2534. doi:10.1002/cber.19110440377.
  9. J. R. Hanson and E. Premuzic (1967). "Applications of chromous chloride--II : The reduction of some steroidal nitro-compounds". Tetrahedron 23 (10): 4105–4110. doi:10.1016/S0040-4020(01)97921-9.
  10. C. Grundmann (1950). "Über die partielle Reduktion von Nitro-cyclohexan". Angewandte Chemie 62 (23-24): 558–560. doi:10.1002/ange.19500622304.
  11. Gerald Booth (2007). "Nitro Compounds, Aromatic". In: Ullmann's Encyclopedia of Industrial Chemistry. John Wiley & Sons: New York. doi:10.1002/14356007.a17_411
  12. Bavin, P. M. G. (1973). "2-Aminofluorene". Org. Synth.; Coll. Vol. 5, p. 30
  13. Allen, C. F. H.; VanAllan, J. (1955). "2-Amino-p-cymene". Org. Synth.; Coll. Vol. 3, p. 63
  14. Fox, B. A.; Threlfall, T. L. (1973). "2,3-Diaminopyridine". Org. Synth.; Coll. Vol. 5, p. 346
  15. Redemann, C. T.; Redemann, C. E. (1955). "5-Amino-2,3-dihydro-1,4-phthalazinedione". Org. Synth.; Coll. Vol. 3, p. 69
  16. Hartman, W. W.; Silloway, H. L. (1955). "2-Amino-4-nitrophenol". Org. Synth.; Coll. Vol. 3, p. 82
  17. Faul, Margaret M.; Thiel, Oliver R. (2005). "Tin(II) Chloride". Encyclopedia of Reagents for Organic Synthesis. Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt112.pub2. ISBN 9780470842898.
  18. Basu, M. K. (2000). "Ultrasound-promoted highly efficient reduction of aromatic nitro compounds to the aromatic amines by samarium/ammonium chloride". Tet. Lett. 41 (30): 5603. doi:10.1016/S0040-4039(00)00917-5.
  19. Ayyangar, N. R.; Brahme, K. C.; Kalkote, U. R.; Srinivasan, K. V. (1984). "Facile Transfer-Reduction of Nitroarenes to N Arylhydroxylamines with Hydrazine in the Presence of Raney Nickel". Synthesis 1984 (11): 938. doi:10.1055/s-1984-31027.
  20. Harman, R. E. (1963). "Chloro-p-benzoquinone". Org. Synth.; Coll. Vol. 4, p. 148
  21. Kamm, O. (1941). "β-Phenylhydroxylamine". Org. Synth.; Coll. Vol. 1, p. 445
  22. 1 2 Bigelow, H. E.; Robinson, D. B. (1955). "Azobenzene". Org. Synth.; Coll. Vol. 3, p. 103
  23. R. F. Nystrom and W. G. Brown (1948). "Reduction of Organic Compounds by Lithium Aluminum Hydride. III. Halides, Quinones, Miscellaneous Nitrogen Compounds". J. Am. Chem. Soc. 70 (11): 3738–3740. doi:10.1021/ja01191a057. PMID 18102934.
  24. O.P.Tandon
This article is issued from Wikipedia - version of the Monday, January 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.