Recombinase
Recombinases are genetic recombination enzymes. DNA recombinases are widely used in multicellular organisms to manipulate the structure of genomes, and to control gene expression. These enzymes, derived from bacteria and fungi, catalyze directionally sensitive DNA exchange reactions between short (30–40 nucleotides) target site sequences that are specific to each recombinase. These reactions enable four basic functional modules, excision/insertion, inversion, translocation and cassette exchange, which have been used individually or combined in a wide range of configurations to control gene expression.[1][2][3][4][5]
Types include:
References
- ↑ Nern, A; Pfeiffer, BD; Svoboda, K; Rubin, GM (Aug 23, 2011). "Multiple new site-specific recombinases for use in manipulating animal genomes.". Proceedings of the National Academy of Sciences of the United States of America 108 (34): 14198–203. doi:10.1073/pnas.1111704108. PMID 21831835.
- ↑ García-Otín, AL; Guillou, F (Jan 1, 2006). "Mammalian genome targeting using site-specific recombinases.". Frontiers in Bioscience 11: 1108–36. doi:10.2741/1867. PMID 16146801.
- ↑ Dymecki, SM; Kim, JC (Apr 5, 2007). "Molecular neuroanatomy's "Three Gs": a primer.". Neuron 54 (1): 17–34. doi:10.1016/j.neuron.2007.03.009. PMID 17408575.
- ↑ Luan, H; White, BH (Oct 2007). "Combinatorial methods for refined neuronal gene targeting.". Current Opinion in Neurobiology 17 (5): 572–80. doi:10.1016/j.conb.2007.10.001. PMID 18024005.
- ↑ Fenno, LE; Mattis, J; Ramakrishnan, C; Hyun, M; Lee, SY; He, M; Tucciarone, J; Selimbeyoglu, A; Berndt, A; Grosenick, L; Zalocusky, KA; Bernstein, H; Swanson, H; Perry, C; Diester, I; Boyce, FM; Bass, CE; Neve, R; Huang, ZJ; Deisseroth, K (Jul 2014). "Targeting cells with single vectors using multiple-feature Boolean logic.". Nature Methods 11 (7): 763–72. doi:10.1038/nmeth.2996. PMID 24908100.
External links
- Recombinases at the US National Library of Medicine Medical Subject Headings (MeSH)
This article is issued from Wikipedia - version of the Saturday, February 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.