Python (missile)

Rafael Python

The newest and the oldest member of the Python family of AAM for comparisons, Python-5 (displayed lower-front) and Shafrir-1 (upper-back).
Type Short-range air-to-air missile
Place of origin Israel
Service history
Used by See operators
Production history
Manufacturer Rafael Advanced Defense Systems
Unit cost Shafrir series: Shafrir-1: US$20,000
Produced
  • Shafrir series: 1961–1983
  • Python series: 1978–present
Specifications
Weight 103.6 kilograms (228 pounds 6 ounces)
Length 3.1 metres (10 feet)
Diameter 160 millimetres (6.3 inches)
Warhead 11 kg (24 lb 4 oz)
Detonation
mechanism
proximity

Engine solid fuel rocket motor
Wingspan 640 mm (25 in)
Operational
range
>20 kilometres (12 miles)
Flight altitude N/A
Speed Mach 4
Guidance
system
infrared homing + 320×240 pixel dual waveband electro-optical imaging seeker, lock on after launch, with infrared counter-counter-measures (IRCCM)
Launch
platform

Aircraft:

CASA C-101 Aviojet
F-4E Kurnass 2000
F-5E/F Tiger-II
McDonnell Douglas F-15 Eagle
General Dynamics F-16 Fighting Falcon[1]
Dassault Mirage III
Dassault Mirage 5
Dassault Mirage 2000
IAI Nesher/Dagger/Finger
IAI Kfir
BAE Sea Harrier
HAL Tejas
SAAB Gripen NG[2]
Sukhoi Su-30MKI
Su-25KM Scorpion[3]

The Rafael Python is a family of air-to-air missiles (AAMs) built by the Israeli weapons manufacturer Rafael Advanced Defense Systems, formerly RAFAEL Armament Development Authority. Originally starting with the Shafrir (Hebrew: שפריר, loosely translated as Dragonfly, a male form of inflection for Damselfly (שפרירית)) series, the Shafrir-1 missile was developed in 1959, followed by the Shafrir-2 in early 1970s. Subsequently, the missiles were given the western name of "Python" by the parent company for export purposes, starting with the Python-3 in 1978. Since then, it has been further developed and evolved into the Python-4, Python-5, Derby and also, the SPYDER, an advanced ground-based air-defence system. Currently, the missiles are in service with the armed forces of over fifteen countries from around the world.

Design and development

Listed from top to bottom: Shafrir-1, Shafrir-2, Python-3, Python-4, Python-5.

In the 1950s, the Israeli Air Force (IAF) submitted requirements for a domestically-made air-to-air missile, to promote domestic defense industry and reduce reliance on imports. Rafael Armament Development Authority was contracted to develop the Shafrir (Hebrew: שפריר, loosely translated as Dragonfly, a male form of inflection for Damselfly (שפרירית)) in 1959. The missile entered operational status with Israeli Mirage jets in 1963, but the IAF was unhappy with its performance and no air combat kills were achieved with it during the Six-Day War, kills being made with guns instead. The improved Shafrir-2 was soon introduced in 1971, it proved to be one of the most successful and deadly missiles ever made. During the 1973 Yom Kippur War, the IAF launched 176 Shafrir-2 missiles, destroying 89 enemy aircraft.[4] The Shafrir-2 was exported along with Israeli-made aircraft to South American countries.

After the Shafrir-2, the new missiles made by Rafael were given the western name of Python. This is why the next missile built by Rafael in early 1970s was named Python-3, but there is no Python-1 or Python-2 (they were Shafrir-1, Shafrir-2). The Python-3 has improved range and all-aspect attack ability, it proved itself before and during the 1982 Lebanon War, destroying 35 enemy aircraft. The People's Republic of China was impressed with its performance and license-built the Python-3 as the PiLi-8 (PL-8) AAM.[5]

Further improvements on the Python-3 lead to the development of Python-4 in mid-1980s, which had limited "fire-and-forget" ability but added the option for helmet-sight guidance.[6] In the 1990s Rafael started development on the Python-5 AAM, which was equipped with an advanced electro-optical imaging seeker with lock-on after-launch ability.[7] The new missile was show-cased in 2003 Paris Air Show, and intended for service with IAF the F-15I Ra'am ("Thunder") and the F-16I Sufa ("Storm").

The Python-5 is said to have full sphere launch ability or is an all-aspect missile, meaning it can be launched at a target regardless of the target's location relative to the direction of the launching aircraft. It can lock on to targets after launch, even when they are up to 100 degrees off the boresight of the launching aircraft.

Variants

Shafrir-1

The Shafrir-1 was developed in 1959–1964 to fulfill IAF's requirement for a domestic air-to-air missile. It was intended to build the domestic defense industry's abilities, and reduce reliance on foreign imports. The fear on foreign dependence was later proven when France banned arms export to Israel.

The Shafrir-1 was intended for use on French-built Mirage jets. The first testing took place in France in 1963. However the missile's performance was so poor that they immediately started on the next improved version, the Shafrir-2.[8]

Shafrir-2

The Shafrir-2 was credited with 89 kills in the 1973 Yom Kippur War.[4] During its whole service life, it is credited with a total of 106 kills.

Python-3

Python 3 missile under the wing of an Israeli F-15 Eagle.

The Python-3 is a much-improved AAM with all-aspect attack ability, higher speed, range, and performance. It performed well before and during the 1982 Lebanon War, scoring 35 (other sources claim 50) kills.[7]

China's PLAAF was quite impressed with this missile, and paid for licensed production as the PL-8 AAM in the 1980s.[5] The program code named "Number 8 Project" (八号工程) and formally started on September 15, 1983. From March 1988 to April 1989, technology transfer to China was complete while license assembly and license built parts continued, and by the spring of 1989, the complete domestic Chinese built missile received state certification. The major supplier of the missile was Xi'an Eastern Machinery Factory (西安东方机械厂) located at Xi'an, and China is also reported to have developed a helmet-mounted sight (HMS) system for the PL-8.[5]

Python-4

A Python 4 missile under the wing F-15D Baz '957'

The Python-4 is a 4th generation AAM with all-aspect attack ability, and integration with a helmet-mounted sight (HMS) system.[6] It entered service in the 1990s, and like its predecessor Python-3, it is integrated with the Elbit Systems DASH (Display And Sight Helmet) HMS system for Israeli F-15s and F-16s, Chilean F-16s (MLU and C/D block 50/52 plus), F-5E/F Tiger III, South-Americans Kfirs and SAAB Jas-39 Gripen. The missile's seeker is reported to use dual band technology array similar to that of US FIM-92 Stinger (infrared homing and ultraviolet), with IRCCM (IR ECCM) ability to reduce background IR radiation to reduce the effectiveness of enemy flares.[9]

Python-5

Python-5, the latest member in the Python family of AAMs

The Python-5[10] is currently the most capable air-to-air missile in Israel's inventory and one of the most advanced AAMs in the world. As a beyond-visual-range missile, it is capable of "lock-on after launch" (LOAL), and has all-aspect/all-direction (including rearward) attack ability. The missile features an advanced electro-optical infrared homing seeker which scans the target area for hostile aircraft, then locks-on for terminal chase. With a total of eighteen control surfaces and careful design, the resulting missile is supposed to be as maneuverable as any other air-to-air missiles with thrust vectoring nozzles.[7] The Python-5 was first used in combat during the 2006 Lebanon War, when it was used by F-16 Fighting Falcons to destroy two Iranian-made Ababil UAVs used by the Hezbollah.[1]

Other Python developments

Derby

The Derby missile

Also known as the Alto, the Derby missile is a BVR, medium-range (~50 km) active radar homing missile. Though technically not part of the "Python" family, the missile is basically an enlarged Python-4 with an active-radar seeker.[11] It is similar to the AIM-120 AMRAAM.

I-Derby-ER

In June 2015, Rafael confirmed the existence of the I-Derby-ER, an extended range version of the Derby that increases range to 54 nmi (62 mi; 100 km), after a "Python 6" version based on an air-launched Stunner missile was abandoned. To achieve greater range, a dual-pulse solid rocket motor is added, where the secondary pulse of energy as the missile nears the target extends flight time. It also combines the seeker and fuse into an integrated sensor and fusing system to make room for the new motor.[12]

SPYDER

SPYDER - Missiles Firing Unit
Main article: SPYDER

The SPYDER (Surface-to-air PYthon and DERby) is an advanced ground based anti-aircraft missile system developed by Rafael that uses surface-to-air versions of the Python-5 and Derby missiles.

Operators

Map with Python operators in blue
Two PL-8 AAMs are clearly visible on a Chinese Navy Shenyang J-8 interceptor

Current operators

See also

References

  1. 1 2 Airframe Details for F-16 #87-1672. F-16.net. Retrieved on 2013-07-17.
  2. Gripen for Brazil - The Fighter. Saabgroup.com. Retrieved on 2013-07-17.
  3. Fighter SU-25KM (Scorpion). Geo-army.ge (2010-06-28). Retrieved on 2013-07-17.
  4. 1 2 Shafrir-2, www.Israeli-Weapons.com.
  5. 1 2 3 4 "PiLi-8 Short-Range Air-to-Air Missile". SinoDefence.com. 12 October 2008. Retrieved 20 March 2012.
  6. 1 2 Python-4, www.Israeli-Weapons.com.
  7. 1 2 3 Python-5, www.Israeli-Weapons.com.
  8. Shafrir 1, www.Israeli-Weapons.com.
  9. Carlo Kopp, "Fourth Generation AAMs - The Rafael Python 4", Australian Aviation, April 1997.
  10. http://www.rafael.co.il/marketing/SIP_STORAGE/FILES/9/1189.pdf Python-5 Full Sphere IR Air-to-Air or Surface-to-Air Missile
  11. Derby Beyond Visual Range Air-to-Air Missile, www.Israeli-Weapons.com.
  12. ISRAEL: Long-range fashion catches on in IAF - Flightglobal.com, 25 January 2015
  13. 1 2 3 4 5 6 7 8 9 10 11 12 "SIPRI arms transfer database". Stockholm International Peace Research Institute. Information generated on 3 April 2014. Retrieved 3 April 2014. Check date values in: |date= (help)
  14. International Institute for Strategic Studies (2010). The Military Balance 2010. United Kingdom: Taylor and Francis. p. 66. ISBN 9781857435573.
  15. International Institute for Strategic Studies (2010). The Military Balance 2010. United Kingdom: Taylor and Francis. p. 72. ISBN 9781857435573.
  16. International Institute for Strategic Studies (2010). The Military Balance 2010. United Kingdom: Taylor and Francis. p. 82. ISBN 9781857435573.
  17. International Institute for Strategic Studies (2010). The Military Balance 2010. United Kingdom: Taylor and Francis. p. 158. ISBN 9781857435573.
  18. "V3S Snake (Rafael Python 3)". South African Air Force. Retrieved 20 March 2012.

External links

Wikimedia Commons has media related to Python missiles.


This article is issued from Wikipedia - version of the Monday, January 25, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.