RNA triphosphatase

In molecular biology, RNA 5'-triphosphatases (RTPases) are phosphatases that cleave the 5'-terminal γ-β phosphoanhydride bond of nascent messenger RNA molecules, thereby releasing a phosphate group. They generate 5'-diphosphate-ended mRNA from 5'-triphosphate-ended precursor mRNA molecules. mRNA guanylyltransferase then adds a backwards guanosine monophosphate (GMP) group from GTP, generating pyrophosphate, and mRNA (guanine-N7-)-methyltransferase methylates the guanine to form the final 5'-cap structure.[1][2][3][4][5] There are two families of RTPases known so far:

See also

References

  1. 1 2 Gross, Christian H; Shuman, Stewart (September 1998). "Characterization of a Baculovirus-Encoded RNA 5'-Triphosphatase". Journal of Virology 72 (9): 7057–7063. Retrieved 6 December 2014.
  2. Ho, C Kiong; Schwer, Beate; Shuman, Stewart (September 1998). "Genetic, Physical, and Functional Interactions between the Triphosphatase and Guanylyltransferase Components of the Yeast mRNA Capping Apparatus". Molecular and Cellular Biology 18 (9): 5189–5198. Retrieved 6 December 2014.
  3. Shuman, Stewart (2000). "Structure, mechanism, and evolution of the mRNA capping apparatus". Progress in Nucleic Acid Research and Molecular Biology 66: 1–40. doi:10.1016/s0079-6603(00)66025-7. Retrieved 6 December 2014.
  4. 1 2 3 4 Takagi, Toshimitsu; Moore, Christine R; Diehn, Felix; Buratowski, Stephen (June 1997). "An RNA 5′-Triphosphatase Related to the Protein Tyrosine Phosphatases". Cell 89 (6): 867–873. doi:10.1016/S0092-8674(00)80272-X. Retrieved 6 December 2014.
  5. 1 2 Wen, Yingxia; Yue, Zhenyu; Shatkin, Aaron J (13 October 1998). "Mammalian capping enzyme binds RNA and uses protein tyrosine phosphatase mechanism". Proceedings of the National Academy of Sciences 95 (21): 12226–12231. doi:10.1073/pnas.95.21.12226. PMC 22813. PMID 9770468. Retrieved 6 December 2014.
  6. Bisaillon, Martin; Bougie, Isabelle (22 June 2003). "Investigating the Role of Metal Ions in the Catalytic Mechanism of the Yeast RNA Triphosphatase". Journal of Biological Chemistry 278 (36): 33963–33971. doi:10.1074/jbc.M303007200. Retrieved 6 December 2014.
  7. 1 2 Lima, Christopher D.; Wang, Li Kai; Shuman, Stewart (November 1999). "Structure and Mechanism of Yeast RNA Triphosphatase". Cell 99 (5): 533–543. doi:10.1016/S0092-8674(00)81541-X. Retrieved 6 December 2014.
  8. 1 2 Karpe, Yogesh A; Lole, Kavita S (30 June 2010). "RNA 5'-Triphosphatase Activity of the Hepatitis E Virus Helicase Domain". Journal of Virology 84 (18): 9637–9641. doi:10.1128/JVI.00492-10. Retrieved 6 December 2014.
  9. Barford, D; Flint, A J; Tonks, N K (11 March 1994). "Crystal structure of human protein tyrosine phosphatase 1B". Science 263 (5152): 1397–1404. doi:10.1126/science.8128219. PMID 8128219. Retrieved 6 December 2014.
  10. Denu, John M; Dixon, Jack E (January 1998). "Protein tyrosine phosphatases: mechanisms of catalysis and regulation". Current Opinion in Chemical Biology 2 (5): 633–641. doi:10.1016/S1367-5931(98)80095-1. Retrieved 6 December 2014.
  11. Deshpande, Tarangini; Takagi, Toshimitsu; Hao, Luning; Buratowski, Stephen; Charbonneau, Harry (4 June 1999). "Human PIR1 of the Protein-tyrosine Phosphatase Superfamily Has RNA 5'-Triphosphatase and Diphosphatase Activities". Journal of Biological Chemistry 274 (23): 16590–16594. doi:10.1074/jbc.274.23.16590. Retrieved 6 December 2014.


This article is issued from Wikipedia - version of the Saturday, April 04, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.