RANDU
RANDU is a linear congruential pseudorandom number generator of the Park–Miller type, which has been used since the 1960s.[1] It is defined by the recurrence:
with the initial seed number, as an odd number. It generates pseudorandom integers which are uniformly distributed in the interval [1, 231 − 1], but in practical applications are often mapped into pseudorandom rationals in the interval (0, 1), by the formula:
- .
RANDU fails the spectral test badly for dimensions greater than 2, and every integer result is odd. However, at least eight low-order bits are dropped when converted to single-precision floating-point.
The reason for choosing these particular values is that with a 32-bit-integer word size, the arithmetic of mod 231 and calculations could be done quickly, using special features of some computer hardware.
Problems with multiplier and modulus
To show the problem with these values, of multiplier 65539 and modulus 231, consider the following calculation where every term should be taken mod 231. Start by writing the recursive relation as:
which becomes, after expanding the quadratic factor:
- because 232 mod 231 = 0
and allows us to show the correlation between three points as:
As a result of this correlation, the points in three-dimensional space (mod 231) fall in 15 planes.[2] As a result of the wide use of RANDU in the early 1970s, many results from that time are seen as suspicious.[3]
This misbehavior was already detected in 1963[4] on a 36-bit computer, and carefully reimplemented on the 32-bit IBM System/360.
Sample output
The start and end of the RANDU’s output period for the initial seed is:
- 1, 65539, 393225, 1769499, 7077969, 26542323, …, 2141591611, 388843697, 238606867, 79531577, 477211307, 1 (sequence A096555 in OEIS)
References
- ↑ Entacher, Karl (June 2000). "A collection of classical pseudorandom number generators with linear structures - advanced version". Retrieved 8 August 2013.
- ↑ Marsaglia, George (1968). "Random Numbers Fall Mainly in the Planes". Proc. Natl. Acad. Sci. U.S.A. 61 (1): 25–28. doi:10.1073/pnas.61.1.25.
- ↑ Press, William H.; et al. (1992). Numerical Recipes in Fortran 77: The Art of Scientific Computing (2nd ed.). ISBN 0-521-43064-X.
- ↑ ref. 7 of http://portal.acm.org/citation.cfm?id=363827
External links
Wikiquote has quotations related to: RANDU |