Quintuple product identity

In mathematics the Watson quintuple product identity is an infinite product identity introduced by Watson (1929) and rediscovered by Bailey (1951) and Gordon (1961). It is analogous to the Jacobi triple product identity, and is the Macdonald identity for a certain non-reduced affine root system.

Statement

 \prod_{n\ge 1} (1-s^n)(1-s^nt)(1-s^{n-1}t^{-1})(1-s^{2n-1}t^2)(1-s^{2n-1}t^{-2}) 
= \sum_{n\in Z}s^{(3n^2+n)/2}(t^{3n}-t^{-3n-1})

References

This article is issued from Wikipedia - version of the Monday, August 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.