Pulpwood

Harvesting a stand of eucalyptus pulpwood in Australia.

Pulpwood refers to timber with the principal use of making wood pulp for paper production.

Applications

Properties

The fiber length of the cellulose fiber is the most important parameter of the pulpwood and determines what it may be used for. The first separation is into softwood and hardwood, that have long and short fibers respectively. In paper production fiber from softwood give tensile strength and fibers from hardwood give opacity.

Sources

Logging

In the logging of mixed forest stands, the better trees are usually used for sawlogs for lumber production, while the inferior trees and components are harvested for pulpwood production. Pulpwood usually derives from four types of woody materials in a mixed logging operation:

Natural forest stands may also be harvested solely for pulpwood where, for various reasons, the value of the trees as sawlogs is low. This may be due to the predominant species in the forest stand (for example, some aspen forests in northern North America), or to the relative proximity of the nearest sawmill or pulp mill.

Plantations

Pulpwood is also harvested from plantations/tree farms established for the specific purpose of growing pulpwood, with little or minimal sawlog production. Monocultures of species intended specifically for pulpwood include loblolly/slash pine in the southern USA; various species of eucalyptus (most commonly Eucalyptus globulus and Eucalyptus grandis) in Latin America, Iberian Peninsula, Australia, south-east Asia[2] and southern Africa and acacia (most commonly Acacia mangium) in south-east Asia and southern Africa.

Salvage cuttings

Salvage cuts after forest fires, tornadoes, hurricanes, or other natural disasters are often used for pulpwood. An alternative source of wood for use in kraft pulping is recovered lumber from demolition, industrial processing of wood and wooden pallets.[3]

Wood residuals

Saw residuals are used as pulp wood. The most important of these are the side cuttings from lumber edgers. This gives wood with almost only sapwood and no heartwood. The sapwood is easier to pulp.[4] due to a more open structure and less content of extractives than the heartwood. The fibre length of sapwood is generally longer than the fibre length of heartwood. The sapwood is also normally lighter and that is an advantage when producing mechanical pulp as less bleaching is needed.

Earlier sawdust had some limited use in paper production. It gives very short fibres that are suitable as part of the furnish for paper tissue and writing papers. Saw blades have become thinner and with smaller teeth making the sawdust too small as fibre source.[5]

Pulpwoods

Economically important pulpwoods

Acacia
Aspen
Birch
Eucalyptus
Maple
Pacific Albus
Pine
Spruce

Chemical composition of some pulpwoods

Chemical composition of pulpwood[6] (%)
Wood Cellulose Lignin Mannan Araban Xylan
Aspen 56.5 16.3 2.3 0.4 16.0
Paper Birch 44.5 18.9 1.5 0.5 24.6
Red maple 44.8 24 3.5 0.5 17.3
Balsam fir 47.7 29.4 12.4 0.5 4.8
Jack pine 45.0 28.6 10.8 1.4 7.1
White spruce 48.5 27.1 11.6 1.6 6.8

See also

References

  1. Martin, Sam (2004). "Paper Chase". Ecology Communications, Inc. Retrieved 2007-09-21.
  2. Kittisiri, Areerat (1996-06-02). "Impacts of Monoculture: The Case of Eucalyptus Plantations in Thailand". Monocultures: Environmental and Social Effects and Sustainable Alternatives Conference. Songkhla, Thailand. Archived from the original on 2006-02-07. Retrieved 2007-10-16.
  3. Ahmed, Aziz; Akhtar, Masood; Myers, Gary C.; Scott, Gary M. (1998). "Kraft Pulping of Industrial Wood Waste" (PDF). TAPPI Pulping Conference, Montreal. pp. 993–1000. Retrieved 2007-10-16.
  4. Gullichsen, Johan; Paulapuro, Hannu, eds. (1999). "3". Forest Products Chemistry. Papermaking Science and Technology 6A. Helsinki, Finland: Fapet OY. p. 298. ISBN 952-5216-06-3.
  5. Biermann, Christopher J. (1993). Essentials of Pulping and Papermaking. San Diego: Academic Press, Inc. p. 22. ISBN 0-12-097360-X.
  6. Robert Summit, Alan Sliker. 1980. "Handbook of Materials Science, Volume IV: Wood". Florida: CRC Press, Inc.
This article is issued from Wikipedia - version of the Sunday, November 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.