Poisson superalgebra
In mathematics, a Poisson superalgebra is a Z2-graded generalization of a Poisson algebra. Specifically, a Poisson superalgebra is an (associative) superalgebra A with a Lie superbracket
such that (A, [·,·]) is a Lie superalgebra and the operator
is a superderivation of A:
A supercommutative Poisson algebra is one for which the (associative) product is supercommutative.
This is one possible way of "super"izing the Poisson algebra. This gives the classical dynamics of fermion fields and classical spin-1/2 particles. The other is to define an antibracket algebra instead. This is used in the BRST and Batalin-Vilkovisky formalism.
Examples
- If A is any associative Z2 graded algebra, then, defining a new product [.,.] (which is called the super-commutator) by [x,y]:=xy-(-1)|x||y|yx for any pure graded x, y turns A into a Poisson superalgebra.
See also
References
- Y. Kosmann-Schwarzbach (2001), "Poisson algebra", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
This article is issued from Wikipedia - version of the Friday, May 02, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.