Cytochrome b6f complex
Cytochrome b6f complex | |||||||||
---|---|---|---|---|---|---|---|---|---|
Crystal structure of the cytochrome b6f complex from C. reinhardtii (1q90). Hydrocarbon boundaries of the lipid bilayer are shown by red and blue dots (thylakoid space side and stroma side, respectively). | |||||||||
Identifiers | |||||||||
EC number | 1.10.99.1 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
The cytochrome b6f complex (plastoquinol—plastocyanin reductase; EC 1.10.99.1) is an enzyme found in the thylakoid membrane in chloroplasts of plants, cyanobacteria, and green algae, that catalyze the transfer of electrons from plastoquinol to plastocyanin.[1] The reaction is analogous to the reaction catalyzed by cytochrome bc1 (Complex III) of the mitochondrial electron transport chain. During photosynthesis, the cytochrome b6f complex transfers electrons from Photosystem II to Photosystem I, whereby pumping protons into the thylakoid space and creating an electrochemical (energy) gradient [2] where it is later used to create adenosine triphosphate (ATP).
Enzyme structure
The cytochrome b6f complex is a dimer, with each monomer composed of eight subunits.[3] These consist of four large subunits: a 32 kDa cytochrome f with a c-type cytochrome, a 25 kDa cytochrome b6 with a low- and high-potential heme group, a 19 kDa Rieske iron-sulfur protein containing a [2Fe-2S] cluster, and a 17 kDa subunit IV; along with four small subunits (3-4 kDa): PetG, PetL, PetM, and PetN.[3][4] The total molecular weight is 217 kDa.
The crystal structure of cytochrome b6f complexes from Chlamydomonas reinhardtii, Mastigocladus laminosus, and Nostoc sp. PCC 7120 have been determined.[2][5][6][7][8][9]
The core of the complex is structurally similar to cytochrome bc1 core. Cytochrome b6 and subunit IV are homologous to cytochrome b[10] and the Rieske iron-sulfur proteins of the two complexes are homologous.[11] However, cytochrome f and cytochrome c1 are not homologous.[12]
Cytochrome b6f contains seven prosthetic groups.[13][14] Four are found in both cytochrome b6f and bc1: the c-type heme of cytochrome c1 and f, the two b-type hemes (bp and bn) in bc1 and b6f, and the [2Fe-2S] cluster of the Rieske protein. Three unique prosthetic groups are found in cytochrome b6f: chlorophyll a, β-carotene, and heme cn (also known as heme x).[5]
The inter-monomer space within the core of the cytochrome b6f complex dimer is occupied by lipids,[9] which provides directionality to heme-heme electron transfer through modulation of the intra-protein dielectric environment.[15]
Biological function
In photosynthesis, the cytochrome b6f complex functions to mediate the transfer of electrons between the two photosynthetic reaction center complexes, from Photosystem II to Photosystem I, while transferring protons from the chloroplast stroma across the thylakoid membrane into the lumen.[2] Electron transport via cytochrome b6f is responsible for creating the proton gradient that drives the synthesis of ATP in chloroplasts.[4]
In a separate reaction, the cytochrome b6f complex plays a central role in cyclic photophosphorylation, when NADP+ is not available to accept electrons from reduced ferredoxin.[1] This cycle results in the creation of a proton gradient by cytochrome b6f, which can be used to drive ATP synthesis. It has also been shown that this cycle is essential for photosynthesis,[16] in which it is proposed to help maintain the proper ratio of ATP/NADPH production for carbon fixation.[17][18]
The p-side quinol deprotonation-oxidation reactions within the cytochrome b6f complex have been implicated in the generation of reactive oxygen species.[19] An integral chlorophyll molecule located within the quinol oxidation site has been suggested to perform a structural, non-photochemical function in enhancing the rate of formation of the reactive oxygen species, possibly to provide a redox-pathway for intra-cellular communication.[20]
Reaction mechanism
The cytochrome b6f complex is responsible for "non-cyclic" (1) and "cyclic" (2) electron transfer between two mobile redox carriers, plastoquinone (QH2) and plastocyanin (Pc):
H2O | → | photosystem II | → | QH2 | → | Cyt b6f | → | Pc | → | photosystem I | → | NADPH | (1) |
QH2 | → | Cyt b6f | → | Pc | → | photosystem I | → | Q | (2) |
Cytochrome b6f catalyzes the transfer of electrons from plastoquinol to plastocyanin, while pumping two protons from the stroma into the thylakoid lumen:
- QH2 + 2Pc(Cu2+) + 2H+ (stroma) → Q + 2Pc(Cu+) + 4H+ (lumen)[1]
This reaction occurs through the Q cycle as in Complex III.[21] Plastoquinone acts as the electron carrier, transferring its two electrons to high- and low-potential electron transport chains (ETC) via a mechanism called electron bifurcation.[22]
Q cycle
First half of Q cycle
- QH2 binds to the positive 'p' side (lumen side) of the complex. It is oxidized to a semiquinone (SQ) by the iron-sulfur center (high-potential ETC) and releases two protons to the thylakoid lumen.
- The reduced iron-sulfur center transfers its electron through cytochrome f to Pc.
- In the low-potential ETC, SQ transfers its electron to heme bp of cytochrome b6.
- Heme bp then transfers the electron to heme bn.
- Heme bn reduces Q with one electron to form SQ.
Second half of Q cycle
- A second QH2 binds to the complex.
- In the high-potential ETC, one electron reduces another oxidized Pc.
- In the low-potential ETC, the electron from heme bn is transferred to SQ, and the completely reduced Q2− takes up two protons from the stroma to form QH2.
- The oxidized Q and the reduced QH2 that has been regenerated diffuse into the membrane.
Cyclic electron transfer
In contrast to Complex III, cytochrome b6f catalyzes another electron transfer reaction that is central to cyclic photophosphorylation. The electron from ferredoxin (Fd) is transferred to plastoquinone and then the cytochrome b6f complex to reduce plastocyanin, which is reoxidized by P700 in Photosystem I.[23] The exact mechanism for how plastoquinone is reduced by ferredoxin is still under investigation. One proposal is that there exists a ferredoxin:plastoquinone-reductase or an NADP dehydrogenase.[23] Since heme x does not appear to be required for the Q cycle and is not found in Complex III, it has been proposed that it is used for cyclic photophosphorylation by the following mechanism:[22][24]
- Fd (red) + heme x (ox) → Fd (ox) + heme x (red)
- heme x (red) + Fd (red) + Q + 2H+ → heme x (ox) + Fd (ox) + QH2
References
- 1 2 3 Berg JM, Tymoczko JL, Stryer L, Stryer L (2007). Biochemistry. New York: W.H. Freeman. ISBN 978-0-7167-8724-2.
- 1 2 3 Hasan SS, Yamashita E, Baniulis D, Cramer WA (Mar 2013). "Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex". Proceedings of the National Academy of Sciences of the United States of America 110 (11): 4297–302. doi:10.1073/pnas.1222248110. PMC 3600468. PMID 23440205.
- 1 2 Whitelegge JP, Zhang H, Aguilera R, Taylor RM, Cramer WA (Oct 2002). "Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein: cytochrome b(6)f complex from spinach and the cyanobacterium Mastigocladus laminosus". Molecular & Cellular Proteomics 1 (10): 816–27. doi:10.1074/mcp.m200045-mcp200. PMID 12438564.
- 1 2 Voet DJ, Voet JG (2011). Biochemistry. New York, NY: Wiley, J. ISBN 978-0-470-57095-1.
- 1 2 Stroebel D, Choquet Y, Popot JL, Picot D (Nov 2003). "An atypical haem in the cytochrome b(6)f complex". Nature 426 (6965): 413–8. doi:10.1038/nature02155. PMID 14647374.
- ↑ Yamashita E, Zhang H, Cramer WA (Jun 2007). "Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn". Journal of Molecular Biology 370 (1): 39–52. doi:10.1016/j.jmb.2007.04.011. PMC 1993820. PMID 17498743.
- ↑ Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (Apr 2009). "Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120". The Journal of Biological Chemistry 284 (15): 9861–9. doi:10.1074/jbc.M809196200. PMC 2665108. PMID 19189962.
- ↑ Hasan SS, Stofleth JT, Yamashita E, Cramer WA (Apr 2013). "Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis". Biochemistry 52 (15): 2649–54. doi:10.1021/bi301638h. PMC 4034689. PMID 23514009.
- 1 2 Hasan SS, Cramer WA (Jul 2014). "Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex". Structure 22 (7): 1008–15. doi:10.1016/j.str.2014.05.004. PMC 4105968. PMID 24931468.
- ↑ Widger WR, Cramer WA, Herrmann RG, Trebst A (Feb 1984). "Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6-f complex: position of the cytochrome b hemes in the membrane". Proceedings of the National Academy of Sciences of the United States of America 81 (3): 674–8. doi:10.1073/pnas.81.3.674. PMC 344897. PMID 6322162.
- ↑ Carrell CJ, Zhang H, Cramer WA, Smith JL (Dec 1997). "Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein". Structure 5 (12): 1613–25. doi:10.1016/s0969-2126(97)00309-2. PMID 9438861.
- ↑ Martinez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL (Feb 1994). "Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation". Structure 2 (2): 95–105. doi:10.1016/s0969-2126(00)00012-5. PMID 8081747.
- ↑ Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008). "Structure-function of the cytochrome b6f complex". Photochemistry and Photobiology 84 (6): 1349–58. doi:10.1111/j.1751-1097.2008.00444.x. PMID 19067956.
- ↑ Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (May 2004). "Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex". Biochemistry 43 (20): 5921–9. doi:10.1021/bi049444o. PMID 15147175.
- ↑ Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA (Jun 2014). "A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex". The Journal of Physical Chemistry. B 118 (24): 6614–25. doi:10.1021/jp501165k. PMC 4067154. PMID 24867491.
- ↑ Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (Jun 2004). "Cyclic electron flow around photosystem I is essential for photosynthesis". Nature 429 (6991): 579–82. doi:10.1038/nature02598. PMID 15175756.
- ↑ Blankenship RE (2002). Molecular mechanisms of photosynthesis. Oxford ; Malden, MA: Blackwell Science. ISBN 978-0-632-04321-7.
- ↑ Bendall D. "Cyclic photophosphorylation and electron transport". Biochimica et Biophysica Acta (BBA) - Bioenergetics. doi:10.1016/0005-2728(94)00195-B.
- ↑ Baniulis D, Hasan SS, Stofleth JT, Cramer WA (Dec 2013). "Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis". Biochemistry 52 (50): 8975–83. doi:10.1021/bi4013534. PMC 4037229. PMID 24298890.
- ↑ Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA (Oct 2014). "Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal". Biophysical Journal 107 (7): 1620–8. doi:10.1016/j.bpj.2014.08.003. PMC 4190601. PMID 25296314.
- ↑ Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL (Jun 1996). "SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS". Annual Review of Plant Physiology and Plant Molecular Biology 47: 477–508. doi:10.1146/annurev.arplant.47.1.477. PMID 15012298.
- 1 2 Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006). "Transmembrane traffic in the cytochrome b6f complex". Annual Review of Biochemistry 75: 769–90. doi:10.1146/annurev.biochem.75.103004.142756. PMID 16756511.
- 1 2 Joliot P, Joliot A (Jul 2002). "Cyclic electron transfer in plant leaf". Proceedings of the National Academy of Sciences of the United States of America 99 (15): 10209–14. doi:10.1073/pnas.102306999. PMID 12119384.
- ↑ Cramer WA, Yan J, Zhang H, Kurisu G, Smith JL (2005). "Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the 'hors d'oeuvres hypothesis' for assembly of the complex". Photosynthesis Research 85 (1): 133–43. doi:10.1007/s11120-004-2149-5. PMID 15977064.
External links
- Structure-Function Studies of the Cytochrome b6f Complex - Current research on cytochrome b6f in William Cramer's Lab at Purdue University, USA
- UMich Orientation of Proteins in Membranes families/superfamily-3 - Calculated positions of b6f and related complexes in membranes
- Cytochrome b6f Complex at the US National Library of Medicine Medical Subject Headings (MeSH)
|
|
|