Photon antibunching

Photon detections as a function of time for a) antibunching (e.g. light emitted from a single atom), b) random (e.g. a coherent state, laser beam), and c) bunching (chaotic light). τc is the coherence time (the time scale of photon or intensity fluctuations).

Photon antibunching generally refers to a light field with photons more equally spaced than a coherent laser field,[1] a signature being signals at appropriate detectors which are anticorrelated. More specifically, it can (but it need not[2]) refer to sub-Poissonian photon statistics, that is a photon number distribution for which the variance is less than the mean. Nevertheless this kind of statistics was not observed directly with photon number resolving detector. A coherent state, as output by a laser far above threshold has Poissonian statistics yielding random photon spacing; while a thermal light field has super-Poissonian statistics and yields bunched photon spacing. In the thermal (bunched) case, the number of fluctuations is larger than a coherent state; for an antibunched source they are smaller.[3]

The variance of the photon number distribution is


V_n=\langle \Delta n^2\rangle=\langle n^2\rangle-\langle n\rangle^2= \left\langle \left(a^{\dagger}a\right)^2\right\rangle-\langle a^{\dagger}a\rangle ^2.

Using commutation relations, this can be written as


V_n=\langle {(a^{\dagger}})^2a^2 \rangle+\langle a^{\dagger}a\rangle-\langle a^{\dagger}a\rangle ^2.

This can be written as


V_n-\langle n\rangle=\langle (a^\dagger)^2 a^2\rangle  -\langle a^{\dagger}a\rangle^2.

The second-order intensity correlation function (for zero delay time) is defined as


g^{(2)}(0)={{\langle (a^\dagger)^2 a^2\rangle}\over{\langle a^{\dagger}a\rangle^2}}.

This quantity is basically the probability of detecting two simultaneous photons, normalized by the probability of detecting two photons at once for a random photon source. Here and after we assume stationary counting statistics.

Then we have


{{1}\over{(\langle n\rangle)^2}}(V_n-\langle n\rangle) =g^{(2)}(0)-1.

Then we see that sub-Poisson photon statistics, one definition of photon antibunching, is given by 
g^{(2)}(0) < 1. We can equivalently express antibunching by Q< 0 where the Mandel Q Parameter is defined as


Q\equiv \frac{V_n}{\langle n \rangle}-1.

If the field had a classical stochastic process underlying it, say a positive definite probability distribution for photon number, the variance would have to be greater than or equal to the mean. This can be shown by an application of the Cauchy-Schwarz inequality to the definition of g^{(2)}(0). Sub-Poissonian fields violate this, and hence are nonclassical in the sense that there can be no underlying positive definite probability distribution for photon number (or intensity).

Photon antibunching by this definition was first observed by Kimble, Mandel, and Dagenais in resonance fluorescence. A driven atom cannot emit two photons at once, and so in this case g^{(2)}(0)=0.0. An experiment with more precision that did not require subtraction of a background count rate was done for a single atom in an ion trap by Walther et al.

A more general definition for photon antibunching concerns the slope of the correlation function away from zero time delay. It can also be shown by an application of the Cauchy-Schwarz inequality to the time dependent intensity correlation function


g^{(2)}(\tau)={{\langle a^{\dagger}(0)a^{\dagger}(\tau)a(\tau)a(0)\rangle}\over{\langle a^{\dagger}a\rangle^2}}.

It can be shown that for a classical positive definite probability distribution to exist (i.e. for the field to be classical) g^{(2)}(0) \leq g^{(2)}(\tau).[4] Hence a rise in the second order intensity correlation function at early times is also nonclassical. This initial rise is photon antibunching.

Another way of looking at this time dependent correlation function, inspired by quantum trajectory theory is


g^{(2)}(\tau)={{\langle a^{\dagger}a\rangle_C}\over{\langle a^{\dagger}a\rangle}}

where


\langle O \rangle_C \equiv \langle \Psi_C |O|\Psi_C\rangle.

with |\Psi_C\rangle is the state conditioned on previous detection of a photon at time \tau=0.

Sources

References

  1. Anti-bunching and Entanglement - http://www.ucd.ie/speclab/UCDSOPAMS/peoplehtml/quantumoptics2006/lecture5.pdf
  2. Singh, S (1983). "Antibunching, sub-poissonian photon statistics and finite bandwidth effects in resonance fluorescence". Optics Communications 44 (4): 254–258. Bibcode:Singh1983254. doi:10.1016/0030-4018(83)90132-3.
  3. Paul, H (1982). "Photon antibunching". Reviews of Modern Physics 54 (4): 1061–1102. Bibcode:1982RvMP...54.1061P. doi:10.1103/RevModPhys.54.1061.
  4. Zou, X T; Mandel, L (1990). "Photon-antibunching and sub-Poissonian photon statistics". Phys. Rev. A 41 (1): 475–476. doi:10.1103/PhysRevA.41.475. PMID 9902890.

See also

This article is issued from Wikipedia - version of the Tuesday, December 29, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.