Chemical elements in East Asian languages
The names for chemical elements in East Asian languages, along with those for some chemical compounds (mostly organic), are among the newest words to enter the local vocabularies. Except for those metals well-known since antiquity, most elements had their names created after modern chemistry was introduced to East Asia in the 18th and 19th century, with more translations being coined for those elements discovered later.
While most East Asian languages use—or had used—the Chinese script, only the Chinese language uses the characters as the predominant way of naming elements. On the other hand, the Japanese, Koreans and Vietnamese primarily employ native alphabets for the names of the elements (Katakana, Hangul and Quốc Ngữ, respectively).
Chinese
In Chinese, characters for the elements are the last officially created and recognized characters in the Chinese writing system. Unlike characters for unofficial varieties of Chinese (e.g., written Cantonese) or other now-defunct ad hoc characters (e.g., those by the Empress Wu), the names for the elements are official, consistent, and taught (with Mandarin pronunciation) to every Chinese and Taiwanese student who has attended public schools (usually by the first year of middle school).
Native characters
Some metallic elements were already familiar to the Chinese, as their ores were already excavated and used extensively in China for construction, alchemy, and medicine. These include the long-established group of "Five Metals" (五金) — gold (金), silver (銀), copper (銅), iron (鐵), and tin (錫) — as well as lead (鉛) and mercury (汞).
Some non-metals were already named in Chinese as well, because their minerals were in widespread use. For example,
- carbon (碳) in the form of charcoal
- boron (硼) as part of borax
- sulfur (硫) had been used to make gunpowder since at least the 10th century in China.
Characters based on European pronunciations
However, the Chinese did not know about most of the elements until they were isolated during the Industrial Age. These new elements therefore required new characters, which were invented using the phono-semantic principle. Each character consists of two parts, one to signify the meaning and the other to hint at the sound:
- The semantic (meaning) part is also the radical of the character. It refers to the element's usual state at room temperature and standard pressure. There are only four radicals used for elements: 釒/钅 (jīn "gold; metal") for solid metals, 石 (shí "stone, rock") for solid non-metals, 水/氵 (shuǐ "water") for liquids, and 气 (qì "air, steam") for gases.
- The phonetic (sound) part represents the character's pronunciation and is a partial transliteration of the element. For each element character, this is a unique phonetic component. Since there are over 100 elements already discovered, there are over 100 different phonetic components used in naming the elements.
Semantic | Phonetic | Element | Source |
---|---|---|---|
釒/钅 + | 里 lǐ | = 鋰/锂 (lǐ) | lithium |
釒/钅 + | 甲 jiǎ | = 鉀/钾 (jiǎ) | kalium, Latin name for potassium |
釒/钅 + | 內/钅 nèi or nà † | = 鈉/钠 (nà) | natrium, Latin name for sodium |
釒/钅 + | 弟 dì or tì † | = 銻/锑 (tì) | antimony |
釒/钅 + | 臬 niè | = 鎳/镍 (niè) | nickel |
釒/钅 + | 甲 gé | = 鎘/镉 (gé) | cadmium |
釒/钅 + | 烏/乌 wū | = 鎢/钨 (wū) | Wolfram, the German name for tungsten |
釒/钅 + | 必 bì | = 鉍/铋 (bì) | bismuth |
釒/钅 + | 由 yóu | = 鈾/铀 (Taiwan yòu* / Mainland yóu) | uranium |
釒/钅 + | 呂/吕 lǚ | = 鋁/铝 (lǚ) | aluminium |
石 + | 典 diǎn | = 碘 (diǎn) | iodine |
气 + | 亥 hài | = 氦 (hài) | helium |
气 + | 弗 fú | = 弟 (fú) | fluorine |
气 + | 乃 nǎi | = 氖 (nǎi) | neon |
- † 內/钅 is primarily pronounced as nèi, but has less commonly as nà, the source of 納/纳. Likewise, the primary pronunciation of 弟 is dì, but the alternate reading of tì gave rise to 悌.
- * The derived pronunciation differs (in tone or in sound) from the pronunciation of the element.
The "water" radical (水) is rarely used, since only two elements (bromine and mercury) are truly liquid at standard room temperature and pressure. Both of their characters are not based on the European pronunciation of the elements' names. Bromine (溴), the only liquid nonmetal at room temperature, is explained in the following section. Mercury (汞), now grouped with the heavy metals, was long classified as a kind of fluid in ancient China.
Meaning-based characters
A few characters, though, are not created using the above "phono-semantic" design, but are "semantic-semantic", that is, both of its parts indicate meanings. One part refers to the element's usual state (like the semanto-phonetic characters), while the other part indicates some additional property or function of the element. In addition, the second part also indicates the pronunciation of the element. Such elements are:
Semantic | Semantic | Element | English | Note |
---|---|---|---|---|
釒/钅 + | 白 bái (white) | = 鉑/铂 bó[note 1] | platinum | The character is repurposed.[note 2] |
氵 + | 臭 chòu (stinky) | = 溴 xiù[note 1] | bromine | odorous (Greek βρῶμος brómos also means "stench") |
气 + | 羊 yáng, short for 養/养 yǎng (to nourish/foster) | = 氧 yǎng[note 3] | oxygen | A continuous supply of oxygenated air nourishes almost all animals |
气 + | 巠/𢀖 jīng, short for 輕/养 qīng (light-weight) | = 氫/氢 qīng[note 3] | hydrogen | the lightest of all elements |
气 + | 彔/录 lù, short for 綠/绿 lǜ (green) | = 氯/氯 lǜ[note 3] | chlorine | greenish yellow in color |
气 + | 炎 yán, short for 淡 dàn (diluted) | = 氮 dàn[note 3] | nitrogen | dilutes breathable air |
石 + | 粦 lín, short for 燐 lín (glow) | = 磷 lín | phosphorus | emits a faint glow in the dark |
- 1 2 The pronunciation of these characters come from the second semantic characters' nearly obsolete pronunciations. Nowadays 白 (white) is normally pronounced bái in the standard Mandarin dialect, although traditionally bó was preferred. Similarly, 臭 (stinky) is almost always pronounced chòu, as opposed to xiù, now an archaic reading.
- ↑ The original meaning of 鉑/铂 is "thin sheet of gold" (now obsolete). The character was not associated with platinum until modern time, since platinum was known in the Old World only after the Age of Discovery.
- 1 2 3 4 The apparent mismatch in pronunciation with the phonetic component is because the pronunciation is inherited from another character that provides the meaning. For example, the ultimate source of the pronunciation of 氧 yǎng (oxygen) is not 羊 yáng (sheep), but 養/养 yǎng (to nourish/foster).
Notes
English | Z | Mainland | Taiwan | Hong Kong/Macau |
---|---|---|---|---|
silicon | 14 | 硅 guī | 矽 xì | 硅 gwai1, 矽 zik6 |
technetium | 43 | 锝 dé | 鎝 tǎ | 鎝 daap1, 鍀 dak1 |
lutetium | 71 | 镥 lǔ | 鎦 liú | 鑥 lou5, 鎦 lau4 |
astatine | 85 | 砹 ài | 砈 è | 砹 ngaai6, 砈 ngo5 |
francium | 87 | 钫 fāng | 鍅 fǎ | 鈁 fong1, 硅 faat3 |
neptunium | 93 | 镎 ná | 錼 nài | 錼 noi6, 鎿 naa4 |
plutonium | 94 | 钚 bù | 鈽 bù | 砈 bat1 |
americium | 95 | 硅 méi | 鋂 méi | 鎇 mei4, 鋂 mui4 |
berkelium | 97 | 锫 péi | 鉳 běi | 錇 pui4, 鉳 bak1 |
californium | 98 | 锎 kāi | 鉲 kǎ | 鐦 hoi1, 鉲 kaa1 |
einsteinium | 99 | 锿 āi | 鑀 ài | 鎄 oi1, 鍀 oi3 |
A minority of the "new characters" are not completely new inventions, as they coincide with archaic characters, whose original meanings have long been lost to most people. For example, 鏷 (protactinium), 鈹 (beryllium), 鉻 (chromium), and 鑭 (lanthanum) are obscure characters meaning "raw iron", "needle", "hook", and "harrow" respectively.
The majority of the elements' names are the same in Simplified Chinese and Traditional Chinese, merely being variants of each other, since most of the names were translated by a single body of standardization before the PRC-ROC split. However, since francium and the transuranium elements were discovered during or after the split, they have different names in Taiwan and in Mainland China. In Hong Kong, both Taiwanese and Mainland Chinese names are used.[1]
The isotopes of hydrogen – deuterium (D) and tritium (T) – are written 氘 dāo and 氚 chuān, respectively, in both simplified and traditional writing. 鑀 is used in Taiwan for both einsteinium (mainland China: 锿) and ionium, a previous name for the isotope thorium-230.
Periodic table
Japanese
Like other words in the language, elements' names in Japanese can be native, from China (Sino-Japanese) or from Europe (gairaigo).
Names based on European pronunciations
Even though the Japanese language also uses Chinese characters (kanji), it primarily employs katakana to transliterate names of the elements from European languages (often German/Dutch or Latin [via German] or English). For example,
English | Japanese | Note |
---|---|---|
antimony | anchimon (アンチモン) | This form without the final vowel (i from y) is likely from Dutch (antimoon) or German (Antimon) |
tungsten | tangusuten (タングステン)) | from English; other major European languages refer to this element as wolfram or tungsten with some additional syllable (-o, -e, etc.). |
sodium | natoriumu (ナトリウム) | natrium in Latin |
uranium | uran (ウラン) | Uran in German |
iodine | yōso (ヨウ素 / 沃素) | -yō (ヨウ, "io-" [joː], like German Jod [joːt]) + -so (素, "element/component"). Chinese uses 碘 (diǎn), the second syllable of iodine. |
fluorine | fusso (弗素) | futsu (弗) approximates flu-. Similar to the Chinese: 弟, plus the "air" radical (气). As 弗 is an extremely rare kanja, it is often written フッ素, using katakana. |
Native names
On the other hand, elements known since antiquity are Chinese loanwords, which are mostly identical to their Chinese counterparts, albeit in the Shinjitai, for example, iron (鉄) is tetsu (Tang-dynasty loan) and lead (鉛) is namari (native reading). While all elements in Chinese are single-character in the official system, some Japanese elements have two characters. Often this parallels colloquial or everyday names for such elements in Chinese, such as 水銀/水银 (pinyin: shuǐyín) for mercury and 硫黃/硫黄 (pinyin: liúhuáng) for sulfur. A special case is tin (錫, suzu), which is more often written in katakana (スズ).
English | Japanese | Chinese | Note |
---|---|---|---|
mercury | suigin (水銀) | 汞 (gǒng) | lit. "watery silver", like the element's symbol, Hg (Latin/Greek hydro-argyrum, "water-silver") |
sulfur | iō, formerly iwō (硫黄) | 硫 (liú) | 黄 (ō) means "yellow", to distinguish 硫 from other characters pronounced the same |
zinc | aen (亜鉛) | 鋅/锌 (xīn) | meaning "lesser lead"; 鉛 is "lead" in Japanese and Chinese |
platinum | hakkin (白金) | 鉑 | lit. "white gold" |
arsenic | hiso (砒素) | 砷 | hi (ヒ) < (砒霜) hishima, the Chinese name for arsenic trioxide (pīshuāng). In modern Chinese, arsenic is instead shēn (砷), an approximation of the second syllable of arsenic.
The kanji 砒 is extremely rare. Often written ヒ素 using katakana. |
boron | hōso (硼素, "borax element") | 硼 | Hō (ホウ) < hōsa (硼砂), the Chinese name for borax (péngshā). Boron is still called péng in modern Chinese.
The kanji 硼 is extremely rare. Often written ホウ素 using katakana. |
Meaning-based names
Some names describe were later invented to properties or characteristics of the element. They were mostly introduced around the 18th century to Japan, and they sometimes differ drastically from their Chinese counterparts. The following comparison shows that Japanese does not use the radical system for naming elements like Chinese.
English | Japanese | Chinese | Note |
---|---|---|---|
hydrogen | suiso (水素, "water's element") | 氫 | translation of the hydro- prefix |
carbon | tanso (炭素, "coal element") | 碳 | translation of the German word for carbon, Kohlenstoff ("coal substance"). |
nitrogen | chisso (窒素, "the suffocating element") | 氮 | translation of the German word for nitrogen, Stickstoff ("suffocating substance"). While nitrogen is not toxic per se, air-breathing animals cannot survive breathing it alone (without sufficient oxygen mixed in). |
oxygen | sanso (酸素, "acid's element") | 氧 |
similar to the German word for oxygen, Sauerstoff ("sour substance") or the Greek-based oxygen ("acid maker"). |
silicon | keiso (硅素 / 珪素) | 硅 | same as Chinese; the kanji 硅 is extremely rare. Often written ケイ素 using katakana. |
phosphorus | rin (燐) | 磷 | similar to Chinese, except the "stone" radical replacing the "fire" radical. The kanji 燐 is extremely rare. Often written リン using katakana. |
chlorine | enso (塩素, "salt's element") | 氯 | it and sodium make up common table salt (NaCl); 塩 is the Shinjitai version of 鹽. |
bromine | shūso (臭素, "the stinky element") | 溴 | similar to Chinese, except the lack of the "water" radical |
Korean
As the Hanja (Sino-Korean characters) are now rarely used in Korea, all of the elements are written in Hangul. Since many Korean scientific terms were translated from Japanese sources, the pattern of naming is mostly similar to that of Japanese. Namely, the classical elements are loanwords from China, with new elements from European languages. For example:
English | Korean | Source |
---|---|---|
gold | geum (금) | from Chinese jin (金) |
silver | eun (은) | from Chinese yin (銀) |
antimony | antimon (안티몬) | from German |
tungsten | teongseuten (텅스텐) | from English |
sodium | nateuryum (나트륨) | from Latin or German (Na for natrium) |
potassium | kalyum (칼륨) | from Latin or German kalium |
manganese | manggan (망간) | from German Mangan |
Pre-modern (18th-century) elements often are the Korean pronunciation of their Japanese equivalents, e.g.,
English | Korean (Hangul, hanja) |
---|---|
hydrogen | suso (수소, 水素) |
carbon | tanso (탄소, 炭素) |
nitrogen | jilso (질소, 窒素) |
oxygen | sanso (산소, 酸素) |
chlorine | yeomso (염소, 鹽素) |
zinc | ayeon (아연, 亞鉛) |
mercury | sueun (수은, 水銀) |
Vietnamese
Some of the metals known since antiquity are loanwords from Chinese, such as copper (đồng from 銅), tin (thiếc from 錫), mercury (thuỷ ngân from 水銀), sulfur (lưu huỳnh from 硫黄), oxygen (dưỡng khí from 氧氣; ôxy is the more common name) and platinum (bạch kim from 白金; platin is the more common name). Others have native Vietnamese readings, such as sắt for iron, bạc for silver, chì for lead, vàng for gold, kền for nickel (niken is the more common name) and kẽm for zinc. In either case, now they are written in the Vietnamese alphabet. Before the Latin alphabet was introduced, sắt was rendered as 𨫊, bạc as 鉑, chì as 𨨲, vàng as 鐄, kền as 𨪝 and kẽm as 𨯘 in Chữ Nôm.
The majority of elements are shortened and localized pronunciations of the European names (usually from French). For example:
- Phosphorus becomes phốtpho.
- The -ine suffix is lost, e.g., chlorine, iodine and fluorine become clo, iốt and flo, respectively.
- The -um suffix is lost, e.g., caesium becomes xêzi, pronounced /sezi/; compare the French césium, pronounced /sezjɔm/ (whereas the English is /sizi-/).
- Similarly, beryllium, tellurium, lithium, natrium (sodium), and lanthanum become berili, telua, liti, natri, and lantan respectively
- The -gen suffix is lost, e.g., nitrogen, oxygen and hydrogen become nitơ, ôxy and hiđrô, respectively
A minority of elements, mostly those not suffixed with -ium, retain their full name, e.g.,
- Tungsten (aka wolfram) becomes volfram.
- Bismuth becomes bitmut.
- Aluminium becomes nhôm (銋), because the ending -nium has a similar pronunciation. It was the first element to be known in English in Vietnam.
- Elements with the -on suffix (e.g. noble gases) seem to be inconsistent. Boron and silicon are respectively shortened to bo and silic. On the other hand, neon, argon, krypton, xenon and radon do not have common shorter forms.
- Unlike the other halogens, astatine retains its suffix (astatin in Vietnamese).
- Antimony is shortened to antimon, and arsenic to asen; these names are similar to the German ones (Antimon and Arsen, respectively).
Some elements have multiple names, for instance, potassium is known as pô-tát and kali (from kalium, the element's Latin name).
See also
References
- ↑ Wong, Kin-on James; Cheuk, Kwok-hung; Lei, Keng-lon; Leung, Ho-ming; Leung, Man-wai; Pang, Hei-tung; Pau, Chiu-wah; Tang, Kin-hung; Wai, Pui-wah; Fong, Wai-hung Raymond (1999). "English-Chinese Glossary of Terms Commonly Used in the Teaching of Chemistry in Secondary Schools" (PDF). Education Bureau. Hong Kong Education City Limited. Retrieved 29 January 2015.
- Wright, David (2000). Translating Science: The Transmission of Western Chemistry into Late Imperial China, 1840–1900. Leiden; Boston: Brill. See especially Chapter Seven, "On Translation".
External links
Periodic tables
- Interactive table in Traditional Chinese
- Interactive table in Simplified Chinese
- Interactive table in Japanese
- Interactive table in Korean
- English-Chinese periodic table of elements
Articles
- The Chinese Periodic Table: A Rosetta Stone for Understanding the Language of Chemistry in the Context of the Introduction of Modern Chemistry into China
- A New Inquiry into the Translation of Chemical Terms by John Fryer and Xu Shou
- Chinese Terms for Chemical Elements
|