Oligomorphic group

In group theory, a branch of mathematics, an oligomorphic group is a particular kind of permutation group. If a group G acts on a set S (usually infinite), then G is said to be oligomorphic if this action has only finitely many orbits on every Cartesian product Sn of S (n-tuples of elements of S for every natural number n). The interest in oligomorphic groups is partly based on their application to model theory, e.g. automorphisms in countably categorical theories.[1]

References

  1. Bhattacharjee, Meenaxi; Macpherson, Dugald; Möller, Rögnvaldur G.; Neumann, Peter M. (1998). Notes on infinite permutation groups. Lecture Notes in Mathematics 1698. Berlin: Springer-Verlag. p. 83. ISBN 3-540-64965-4. Zbl 0916.20002.

External links

This article is issued from Wikipedia - version of the Friday, November 21, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.