Napier Sabre
Sabre | |
---|---|
Napier Sabre cutaway at the London Science Museum. | |
Type | Liquid-cooled H-24 sleeve valve piston aero engine |
National origin | United Kingdom |
Manufacturer | Napier & Son |
First run | January 1938 |
Major applications | Hawker Tempest Hawker Typhoon Napier-Heston Racer |
|
The Napier Sabre was a British H-24-cylinder, liquid-cooled, sleeve valve, piston aero engine, designed by Major Frank Halford and built by Napier & Son during World War II. The engine evolved to become one of the most powerful inline piston aircraft engines in the world, developing from 2,200 horsepower (1,640 kW) in its earlier versions to 3,500 hp (2,600 kW) in late-model prototypes.[1]
The first operational aircraft to be powered by the Sabre were the Hawker Typhoon and Hawker Tempest; the first aircraft powered by the Sabre was the Napier-Heston Racer, which was designed to capture the world speed record.[nb 1] Other aircraft using the Sabre were early prototype and production variants of the Blackburn Firebrand, the Martin-Baker MB 3 prototype and a Hawker Fury prototype. The rapid introduction of jet engines after the war led to the quick demise of the Sabre, as there was less need for high power military piston aero engines and because Napier turned its attention to developing turboprop engines such as the Naiad and Eland.
Design and development
Prior to the Sabre, Napier had been working on large aero engines for some time. Their most famous was the Lion, which had been a very successful engine between the World Wars and in modified form had powered several of the Supermarine Schneider Trophy competitors in 1923 and 1927, as well as several land speed record cars. By the late 1920s, the Lion was no longer competitive and work started on replacements.
Napier followed the Lion with two new H-block designs: the H-16 (Rapier) and the H-24 (Dagger). The H-block has a compact layout, consisting of two horizontally opposed engines, lying one atop or beside another. Since the cylinders are opposed, the motion in one is balanced by the motion on the opposing side, leading to no first order vibration or second order vibration. In these new designs, Napier chose air cooling but in service, the rear cylinders proved to be impossible to cool properly, which made the engines unreliable.
Genesis
During the 1930s, designers were looking to future engine developments; studies showed the need for engines capable of developing one horsepower per cubic inch of displacement (about 45 kW/litre). This specific power output was needed to propel aircraft large enough to carry large fuel loads, for long range flights. A typical large engine of the era, the Pratt & Whitney R-1830 Twin Wasp, developed about 1,200 hp (895 kW) from 1,820 cubic inches (30 litres), so an advance of some 50 percent would be needed. This called for radical changes and while many companies tried to build such an engine, none succeeded.
In 1927, Harry Ricardo published a study on the concept of the sleeve valve engine. In it, he wrote that traditional poppet valve engines would be unlikely to produce much more than 1,500 hp (1,100 kW), a figure that many companies were eyeing for next generation engines. In order to pass this limit, the sleeve valve would have to be used, to increase volumetric efficiency, as well as to decrease the engine's sensitivity to detonation, which was prevalent with the poor quality fuels in use at the time. Halford's office was next to Ricardo's in London, and while Ricardo started work with Bristol Engines on a line of sleeve-valve designs, Halford started work with Napier, using the Dagger as the basis. The layout of the H-block, with its inherent balance and the Sabre's relatively short stroke, allowed it to run at a higher rate of rotation, to deliver more power from a smaller displacement, provided that good volumetric efficiency could be maintained (with better breathing), which sleeve valves could do. Another important effect of increasing the number of cylinders was that the piston area increases (for a given capacity and bore/stroke ratio) and this brings higher power.
The Napier company decided first to develop a large 24 cylinder liquid–cooled engine, capable of producing at least 2,000 hp (1,491 kW) in late 1935. Although the company continued with the opposed H layout of the Dagger, this new design positioned the cylinder blocks horizontally and it was to use sleeve valves.[2] All of the accessories were grouped conveniently above and below the cylinder blocks, rather than being at the front and rear of the engine, in most contemporary designs.[2]
The first Sabre engines were ready for testing in January 1938, although they were limited to 1,350 hp (1,000 kW). By March, they were passing tests at 2,050 hp (1,500 kW), and by June 1940, when the Sabre passed the Air Ministry's 100-hour test, the first production versions were delivering 2,200 hp (1,640 kW) from their 2,238 cubic inch (37 litre) displacements.[2] By the end of the year, they were producing 2,400 hp (1,800 kW). To put this in perspective, the contemporary 1940 Rolls-Royce Merlin II was generating just over 1,000 hp (750 kW) from a 1,647 cubic inch (27 litre) displacement.
Production
Problems arose as soon as mass production began. Prototype engines had been hand-assembled by Napier craftsmen and it proved to be difficult to adapt it to assembly-line production techniques. The sleeves often failed, leading to seized cylinders, which caused the loss of the sole prototype Martin-Baker MB 3.[3][4] After testing some 18 different materials and manufacturing techniques, a process of nitriding and lapping the sleeves helped resolve the problem.[3]
Quality control proved to be inadequate, engines were often delivered with improperly cleaned castings, broken piston rings and machine cuttings left inside the engine.[5] Mechanics were overworked trying to keep the Sabres running and during cold weather they had to run them every two hours during the night so that the engine oil would not congeal and prevent the engine from starting the next day.[nb 2] These problems took too long to remedy and the engine gained a bad reputation. To make matters worse, mechanics and pilots unfamiliar with the different nature of the engine, tended to blame the Sabre for problems that were caused by incorrect handling. This was exacerbated by the representatives of the competing Rolls-Royce company, which had its own agenda. In 1944, Rolls-Royce produced its own version called the Eagle.
Napier seemed complacent and tinkered with the design for better performance. In 1942, it started a series of projects to improve its high-altitude performance, with the addition of a three-speed, two-stage supercharger, when the basic engine was still not running reliably. In December 1942, the company was purchased by the English Electric Company, which ended the supercharger project immediately and devoted the whole company to solving the production problems, which was achieved quickly.
By 1944, the Sabre V was delivering 2,400 horsepower (1,800 kW) consistently and the reputation of the engine started to improve. This was the last version to enter service, being used in the Hawker Typhoon and its derivative, the Hawker Tempest. Without the advanced supercharger, the engine's performance over 20,000 ft (6,100 m) fell off rapidly and pilots flying Sabre-powered aircraft, were generally instructed to enter dogfights only below this altitude. At low altitude, both planes were formidable, with the Typhoon readily outperforming its German counterpart, the FW 190. After the destruction of the Luftwaffe during early 1944, Typhoons were increasingly used as fighter-bombers, notably by the RAF Second Tactical Air Force. The Tempest became the principal destroyer of the V-1 flying bomb (Fieseler Fi 103), since it was the fastest of all the Allied fighters at low levels. Later on, the Tempest was responsible for the destruction of about 20 Messerschmitt Me 262 jet aircraft.
Development continued and the later Sabre VII delivered 3,500 hp (2,600 kW) with a new supercharger. The final test engines delivered 5,500 hp [6](4,100 kW) at 45 lb/in2 boost. By the end of World War II, there were several engines in the same power class. The Pratt & Whitney R-4360 Wasp Major four-row, 28-cylinder radial produced 3,000 hp (2,280 kW) at first and later types produced 3,800 hp (2,834 kW), but these required almost twice the displacement in order to do so, 4,360 cubic inches (71 litres).
Variants
Note:'[nb 3]
- Sabre I (E.107)
- (1939) 2,000 horsepower (1,490 kW).
- Sabre II
- (1940) 2,300 horsepower (1,715 kW). Experimental 0.332:1 propeller reduction gear ratio.
- Sabre II (production variant)
- 2,200 horsepower (1,640 kW). Reduction gear ratio 0.274:1: mainly used in early Hawker Typhoons.[7]
- Sabre IIA
- 2,235 horsepower (1,665 kW). Revised ignition system: maximum boost +9 lbs.[8]
- Sabre IIB
- 2,400 horsepower (1,790 kW). Four choke S.U. carburettor: Mainly used in Hawker Tempest V.[9]
- Sabre IIC
- 2,065 horsepower (1,540 kW). Similar to Mk VII.
- Sabre III
- 2,250 horsepower (1,680 kW). Similar to Mk IIA, tailored for the Blackburn Firebrand: 25 manufactured and installed.[9]
- Sabre IV
- 2,240 horsepower (1,670 kW). As Mk VA with Hobson fuel injection: preliminary flight development engine for Sabre V series.[9] Used in Hawker Tempest I.[10]
- Sabre V
- 2,600 horsepower (1,940 kW). Developed MK II, redesigned supercharger with increased boost, redesigned induction system.
- Sabre VA
- 2,600 horsepower (1,940 kW). Mk V with Hobson-R.A.E fuel injection, single-lever throttle and propeller control: used in Hawker Tempest VI.
- Sabre VI
- 2,310 horsepower (1,720 kW). Mk VA with Rotol cooling fan: used in 2 Hawker Tempest Vs modified to use Napier designed annular radiators; also in experimental Vickers Warwick V.[11]
- Sabre VII
- 3,055 horsepower (2,278 kW). Mk VA strengthened to withstand high powers produced using Water/Methanol injection. Larger supercharger impeller.[12]
- Sabre VIII
- 3,000 horsepower (2,240 kW). Intended for Hawker Fury; tested in the Folland Fo.108.
- Sabre E.118
- (1941) Three-speed, two-stage supercharger, contra-rotating propeller; test flown in Fo.108.
- Sabre E.122
- (1946) 3,500 horsepower. Intended for Napier 500mph tailless fighter
Applications
The engine has been used in multiple aircraft, including the two widely deployed fighters.[13]
Applications - widely deployed
Applications - limited production and prototypes
- Blackburn Firebrand, only in 21 early production aircraft
- Fairey Battle, testbed
- Folland Fo.108, testbed
- Hawker Fury, prototype (2 built (LA610,VP207), 485 mph)
- Martin-Baker MB 3, prototype
- Napier-Heston Racer, prototype
- Vickers Warwick, prototype
Restoration project and engines on display
Napier Sabre engine under restoration:
- A SABRE IIA engine has been restored by the Museum's Friends ASSN at the MUSEO NACIONAL DE AERONAUTICA and is now on public display at the ENGINES HALL
- Canadian Aviation Heritage Centre, Macdonald Campus, McGill University, Montréal.[14]
Preserved Napier Sabre engines on public display:
- London Science Museum
- Royal Air Force Museum London
- Solent Sky
- Fantasy of Flight, Polk City, Florida
Sectioned Napier Sabre engines on public display:
- Imperial War Museum, Duxford
- Birmingham Museum of Science and Industry
- Cambridge University Engineering Department
- RNZAF Museum, Wigram
- Canada Aviation and Space Museum, Ottawa
Specifications (Sabre VA)
General characteristics
- Type: 24-cylinder supercharged liquid-cooled H-type aircraft piston engine
- Bore: 5.0 in (127 mm)
- Stroke: 4.75 in (121 mm)
- Displacement: 2,240 in³ (36.65 L)
- Length: 82.25 in (2,089 mm)
- Width: 40 in (1,016 mm)
- Height: 46 in (1,168 mm)
- Dry weight: 2,360 lb (1,070 kg)
Components
- Valvetrain: Sleeve valve
- Supercharger: Torsion shaft drive to gear-driven, single-stage, two-speed centrifugal supercharger
- Fuel system: Hobson-R.A.E injection-type carburettor
- Fuel type: 100/130 octane petrol
- Oil system: High pressure: Oil pump and full flow oil filter with three scavenge pumps
- Cooling system: Liquid cooled: 70% water and 30% ethylene glycol coolant mixture, pressurised.
Performance
- Power output: * 2,850 hp (2,065 kW) at 3,800 rpm and +13 psi (0.9 bar, 56") intake boost
- 3,040 hp (2,200 kW) at 4,000 rpm war emergency power
- Specific power: 1.36 hp/in³ (59.9 kW/L)
- Compression ratio: 7:1
- Fuel consumption: 117 gallons/hour (532 L/hr) at maximum cruise, F.S supercharger gear; 241 gallons/hour (1,096 L/hr) at maximum combat rating, F.S supercharger
- Oil consumption: 47 pints/hour (27 L/hr) at maximum cruise 3,250 rpm and +7 psi (0.48 bar, 14"); 71 pints/hour (40 L/hr) at war emergency power
- Power-to-weight ratio: 1.29 hp/lb (2.06 kW/kg)
See also
- Comparable engines
- Daimler-Benz DB 604
- Dobrynin VD-4K
- Junkers Jumo 222
- Lycoming H-2470
- Pratt & Whitney X-1800
- Pratt & Whitney XH-3130
- Rolls-Royce Eagle
- Wright R-2160 Tornado
- Related lists
References
Footnotes
- ↑ The Napier-Heston Racer used the first production Sabre engine. The world-record contender crashed during early tests and the project was discontinued.
- ↑ Unlike current "multigrade" motor oils, the lubricants in use in the 1940s thickened up at low temperatures, thus preventing the Sabre from "picking-up" when started.
- ↑ List from Lumsden unless otherwise noted.
Notes
- ↑ Wintjens, Piet. "Napier Sabre". The Hawker Tempest Page. Retrieved 17 June 2012.
- 1 2 3 [F C Sheffield] 23 March 1944. "2,200 h.p. Napier Sabre " Flight, p. 309. www.flightglobal.com. Retrieved: 9 November 2009.
- 1 2 Flight 1945, p.550.
- ↑ Aeroplane 2010, pp. 65–66.
- ↑ Napier Sabre Retrieved on 17 July 2009.
- ↑ Setright p.134
- ↑ Sheffield March 1944, p. 310.
- ↑ Air Ministry 1943, pp. 24, 25.
- 1 2 3 Flight 1945, p. 551.
- ↑ Mason 1991, p. 331.
- ↑ Flight 1946, p. 91.
- ↑ Flight 1945, p. 552.
- ↑ Application lists from Lumsden
- ↑ CAHC "Workshop One" Retrieved: 21 November 2009.
- ↑ Lumsden 2003, p.176.
- ↑ Flight 1945, pp. 550-553.
Bibliography
- Air Ministry. Pilot's Notes for Typhoon Marks IA and IB; Sabre II or IIA engine (2nd edition). London: Crecy Publications, 2004. ISBN 0-85979-033-9
- "A Real Contender (article and images) " Aeroplane No. 452, Volume 38, Number 12, December 2010.
- Lumsden, Alec. British Piston Engines and their Aircraft. Marlborough, Wiltshire: Airlife Publishing, 2003. ISBN 1-85310-294-6.
- Mason, Francis K. Hawker Aircraft Since 1920 (3rd revised edition). London, UK: Putnam, 1991. ISBN 0-85177-839-9.
- Sheffield, F C. "2,200 h.p. Napier Sabre (article and images)." Flight and The Aircraft Engineer No. 1829, Volume XLV, 13 January 1944.
- Sheffield, F C. "Napier Sabre II (article and images)." Flight and The Aircraft Engineer No. 1839, Volume XLV, 23 March 1944.
- "Napier Sabre VII (article and images)." Flight and The Aircraft Engineer No. 1926, Volume XLVIII, 22 November 1945.
- "A Co-operative Challenger (article and images on Heston Racer)." Flight and The Aircraft Engineer No. 1790, Volume XLIII, 15 April 1943.
- "Napier Flight Development (article and images on Napier's test and development centre)." Flight and The Aircraft Engineer No. 1961, Volume L, 25 July 1946.
- Setright, L. J. K.: The Power to Fly: The Development of the Piston Engine in Aviation. Allen & Unwin, 1971. ISBN 0-04-338041-7.
Further reading
- Bridgman, Leonard, ed. Jane's All The World's Aircraft 1945–1946. London: Samson Low, Marston & Company, Ltd 1946. ISBN 0-517-67964-7 (1989 copy by Crescent Books, NY.)
- Clostermann, Pierre: The Big Show. London, UK: Chatto & Windus Ltd in association with William Heinemann Ltd., 1953. ISBN 0-297-84619-1 (2004 edition).
- Napier Power Heritage Trust site
- The Hawker Tempest Page: Napier Sabre
- White, Graham: Allied Aircraft Piston Engines of World War II. Society of Automotive Engineers (SAE), 1995. ISBN 1-56091-655-9.
External links
Wikimedia Commons has media related to Napier Sabre. |
- Cutaway illustration of a Napier Sabre drawn by Max Millar (uncredited) and coloured in by Makoto Oiuchi
- The Sabre-powered Napier-Heston Racer
- The Hawker Tempest Page
- The Greatest Engines of All Time
- NAPIER SABRE 3000 B.H.P A 1946 Flight advertisement for the Sabre engine
|