NOAAS Okeanos Explorer (R 337)

Okeanos Explorer at sea with satellite dome over its bridge
History
United States
Name: USNS Capable (T-AGOS-16)
Awarded: 20 February 1987
Builder: Halter Marine
Laid down: 17 October 1987
Launched: 28 October 1988
In service: 9 June 1989
Out of service: 14 September 2004
Fate: Transferred to NOAA
United States
Name: Okeanos Explorer
Commissioned: 13 August 2008
In service: 2010 - present
General characteristics
Class & type: Stalwart-class Ocean Surveillance Ship
Displacement:
  • 1565 tons (lightship)
  • 2265 tons (full load)
Length: 224 ft (68 m)
Beam: 43 ft (13 m)
Draft: 17 ft (5.2 m)
Propulsion: 4 × Caterpilar D398 diesels, 3,200 hp; GE motors, 2x 800 hp; 2x 250 hp stern thrusters; 1x 500 hp bow thruster
Speed: 10 knots (19 km/h)
Range: 9,600 nautical miles (18,000 km)
Endurance: 40 days
Complement: 6 commissioned officers, 3 licensed engineers, 18 crew, 19 scientists

NOAAS Okeanos Explorer (R 337) is a converted United States Navy ship (formerly USNS Capable (T-AGOS-16)), now an exploratory vessel for the National Oceanic and Atmospheric Administration (NOAA), officially launched in 2010.[1] Starting in 2010, NOAA entered into a five-year partnership with the San Francisco Exploratorium. The focus is on gathering scientific information about oceans for the public as well as for scientific uses. As much as 95% of the ocean remains unexplored, NOAA officials said.[2] The ship is equipped with cameras and will provide real-time viewing of the ocean floor for scientists and for the public.[1]

This is a pioneering use of what NOAA calls "telepresence technology".[3] The Okeanos Explorer is the only vessel owned by the U.S. government that is dedicated to exploring the seabed and ocean crust.[4]

Description

The 224-foot-long (68 m) converted vessel is covered with cameras capable of high definition images, and sophisticated devices such as 3-D sonar mapping systems. It looks like an average ship, except for a 12-foot-wide (3.7 m) white ball, its satellite dome, mounted high above its bridge.[2] The Okeanos Explorer is the only NOAA ship to have a dedicated ROV. Although ROV’s have been used on other NOAA ships, they are typically removed at the end of a cruise. Having a permanent ROV makes it easier to deploy at any time throughout the field season. On the Okeanos Explorer, there is an integrated control room for operating the multibeam, ROV and telepresence communication equipment. Having the screens and computers permanently wired to the ship makes it more efficient to sustain long-term exploration in remote areas of the world.

Voyages

Northeast U.S. Canyons Expedition 2013, Introduction

From July to August 2013, a team of scientists and technicians both at-sea and on shore will conduct exploratory investigations on the diversity and distribution of deep-sea habitats and marine life along the Northeast U.S. Canyons and at Mytilus Seamount, located within the U.S. Exclusive Economic Zone. The 36-day expedition is composed of two cruise ‘legs.’The exploration area for this community-driven expedition was identified based on the discussions and information stemming from the May 2011 Atlantic Basin Workshop and priority area input received from other NOAA programs and the management community. Using this input, and data acquired during previous Atlantic Canyon Undersea Mapping Expeditions (ACUMEN Project), NOAA and the broader science community have identified a number of exciting targets to explore during the two cruise legs, commencing the next steps in systematic exploration. In the coming weeks, we expect to explore cold seeps, deep coral communities, undersea canyons, landslide features, and a seamount.The expedition also marks the first time NOAA’s new 6,000 meter remotely operated vehicle (ROV), Deep Discoverer and the Seirios camera sled and lighting platform will be used to in a full telepresence-enabled ocean exploration with NOAA Ship Okeanos Explorer. When these systems are deployed from the ship, we will be able to provide scientists and the audiences onshore with real-time video footage from deepwater areas in important, yet largely unknown, U.S. waters.

Gulf of Mexico 2012 Expedition

From March to April 2012, a team of scientists and technicians both at-sea and on shore will conducted exploratory investigations on the diversity and distribution of deep-sea habitats and marine life in the northern Gulf of Mexico. The 56-day expedition was divided into three 'legs.' Through discussions and information stemming from the May 2011 Atlantic Basin Workshop, Fall 2011 Gulf of Mexico mapping expedition, and Leg I of the 2012 Gulf of Mexico expedition, NOAA and the broader science community identified a number of exciting targets to explore during Legs II and III. We explored cold seeps, deep coral communities, undersea canyons, and shipwrecks.The expedition also marked the return of the Institute for Exploration’s Little Hercules remotely operated vehicle (ROV) and NOAA’s Seirios camera sled and lighting platform to the NOAA Ship Okeanos Explorer. When these systems were deployed from the ship, we were able to provide scientists and the audiences onshore with real-time video footage from deepwater areas in important, yet largely unknown, U.S. waters.

Veatch Canyon Shakedown Cruise 2012

"EX1201" was the first expedition of the 2012 field season for NOAA Ship Okeanos Explorer. The primary objective of this shakedown cruise was to operationally test the vessel, its systems, and all mission equipment. A secondary objective of the expedition was to use the ship’s technologically advanced multibeam sonar to map three Northeast and Mid-Atlantic canyon areas in support of the benthic habitat identification and management efforts of NOAA's Northeast Fisheries Science Center (NEFSC).After departing its homeport of Davisville, Rhode Island, on February 14, Okeanos Explorer proceeded offshore to Veatch Canyon where a sonar patch test was conducted to ensure the proper calibration of the vessel’s multibeam echosounder. As part of successful patch test operations, approximately 280 square kilometers of Veatch Canyon were bathymetrically mapped, including the majority of the first priority area identified by NEFSC. Later in the cruise, focused survey operations conducted at Block, Ryan, and McMaster Canyons mapped approximately 900 square kilometers of seafloor, including 65 percent of the second NEFSC priority area.Focused mapping operations at Hendrickson, Toms, and Berkeley Canyons covered approximately 1,400 square kilometers of seafloor.Image courtesy of NOAA Okeanos Explorer Program.Finally, focused mapping operations at Hendrickson, Toms, and Berkeley Canyons covered approximately 1400 square kilometers of seafloor, including 85 percent of the third NEFSC priority area.While transiting along the continental shelf break between focused mapping areas, multibeam, single beam, and sub-bottom sonar data was collected, adding to the seafloor mapping coverage established onOkeanos Explorer cruise EX1106.In addition to successful shakedown testing and mapping operations, EX1201 also yielded a number of positive educational outcomes. During the cruise, two graduate interns were trained in seafloor mapping operations as part of the Okeanos Explorer internship program. Additionally, approximately 50 high school students, educators, and local media toured the vessel and learned about its mission at the conclusion of the expedition, in Charleston, South Carolina.

During the 2011 filed season the NOAA Ship Okeanos Explorer participated in two large scale expeditions.

Galápagos Rift Expedition 2011

From June to July 2011, a team of scientists and technicians both at-sea and on shore conducted exploratory investigations on the diversity and distribution of deep-sea habitats and marine life in the vicinity of the Galápagos Islands. The 50-day expedition is divided into two ‘legs’ and includes work in Ecuador, Costa Rica, and international waters. Mapping and water column information collected during Leg I identified a number of exciting targets to explore with the Institute for Exploration’s Little Hercules ROV during Leg II. Between July 11 and July 28, the ship explored seamounts, the oldest known vent fields, off-axis sulfide mounds, deep fracture zones, and newly discovered vents. The expedition also marks the debut of a new camera sled and lighting platform named Seirios. When deployed from the ship with the Little Hercules, provided scientists and the audiences onshore with the very first video footage from a number of deepwater areas around the Galápagos.

Mid-Cayman Rise Expedition 2011

In August 2011, NOAA Ship Okeanos Explorer embarked on an expedition to the deepest part of the Caribbean Sea, where a team of international scientists both at-sea and on shore will conduct interdisciplinary investigations of the Mid-Cayman Rise – an ultra-slow spreading center where two plates gradually move apart and upwelling magma creates new crust and the adjacent Cayman Trough. Our exploration will focus on the oceanic core complexes that appear to dominate construction of the rift valley walls along much of the Mid-Cayman Rise, and the inner wall of the Cayman Trough fracture zone immediately to the north – investigating the geology, marine life, and hydrothermal systems that these areas might host. Over the course of 10 days, the ship mapped the rift valley walls of the Mid-Cayman Rise and northern wall of the Cayman Trough Fracture zone using the ship’s deep-water multibeam sonar; explored the water column for hydrothermal activity using a CTD rosette, in situ sensors, and shipboard dissolved methane analysis; and conducted detailed seafloor investigations the ship’s ROV. During the expedition, live video of ongoing operations were be streamed to shore where a team of scientists from the U.S. and U.K. joined the expedition remotely through the use of telepresence technology.

Sonar scan of the water column July 2013, North Atlantic Ocean
Time lapse video of a 3-D mapping of water column sonar data by the NOAA research ship Okeanos Explorer [5]
Static image of the sonar scan in the video at the left. The backscattered signal (green) above the bottom is likely the deep scattering layer.[5]

Education

NOAA is seeking to provide data for, and interact with, students, teachers, and anyone else who is interested.[2] For this purpose it is collaborating with San Francisco's Exploratorium to develop an online eductational programs with live broadcast for all ages and for the general public. They will "join the scientific expertise and observational resources of the NOAA with the creativity and educational expertise of the Exploratorium", a press release said.[6] The Okeanos Explorer is designed as an educational tool that can be followed on Twitter.[7][8]

Notes

  1. 1 2 "New high-tech ship will take ocean exploration to new, amazing depths". www.mercurynews.com. Retrieved 2009-08-09.
  2. 1 2 3 Kerr, Dara. "Okeanos Explorer to delve the depths of the seas". news.cnet.com. Retrieved 2009-08-09.
  3. Martinez, Catalina Martinez. "NOAA Ocean Explorer: Okeanos Explorer: A New Paradigm for Exploration: Telepresence". oceanexplorer.noaa.gov. Retrieved 2009-08-09.
  4. "Telepresence Technology — Office of Ocean Exploration and Research". explore.noaa.gov. Retrieved 2009-08-09.
  5. 1 2 Water Column Sonar Data National Geophysical Data Center, NOAA.
  6. "NOAA gets creative with Exploratorium". San Francisco Examiner. Retrieved 2009-08-09.
  7. "NOAA, Ocean Explorer". oceanexplorer.noaa.gov. Retrieved 2009-08-10.
  8. "NOAA, Ocean Explorer (oceanexplorer) on Twitter". twitter.com. Retrieved 2009-08-10.

References

External links

Wikimedia Commons has media related to Okeanos Explorer.
This article is issued from Wikipedia - version of the Saturday, October 24, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.