MuSIASEM

MuSIASEM or Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism,[1][2][3] is a method of accounting used to analyse socio-ecosystems and to simulate possible scenarios of development. It is based on maintaining coherence across scales and different dimensions (e.g. economic, demographic, energetic) of quantitative assessments generated using different metrics. It is designed to detect and analyze patterns in the societal use of resources and the impacts they create in the environment. The approach was created around 1997 by Mario Giampietro and Kozo Mayumi, and has been developed since then by the members of the IASTE (Integrated Assessment: Sociology, Technology and the Environment) group at the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona and its external collaborators. MuSIASEM strives to characterize metabolic patterns of Socio-Ecological Systems (how and why humans use resources and how this use depends on and affects the stability of the ecosystems embedding the society). This integrated approach allows for a quantitative implementation of the DPSIR framework (Drivers, Pressures, States, Impacts and Responses) and application as a decision support tool. Different scenarios can be checked in terms of feasibility (compatibility with processes outside human control), viability (compatibility with processes under human control) and desirability (compatibility with normative values and institutions). The ability to integrate quantitative assessments across dimensions and scales makes MuSIASEM particularly suited for different types of sustainability analysis: (i) the nexus between food, energy, water and land uses; (ii) urban metabolism; (iii) waste metabolism; (iv) tourism metabolism; (v) rural development.

Applications

MuSIASEM accounting has been used for the integrated assessment of agricultural systems,[4][5][6][7] biofuels ,[8][9] nuclear power ,[10][11] energetics,[12][13][14] sustainability of water use,[15][16] mining,[17] urban waste management systems,.[18][19][20] MuSIASEM has been applied to assess societal metabolism at the municipal,[21] regional (rural Laos;[22] Catalonia;[23] China:,[24] national,[25][26][27] ,[28][29] and supernational[12] scale. An application of the method to the nexus between natural resources is in the book ‘Resource Accounting for Sustainability: The Nexus between Energy, Food, Water and Land Use’[30] This work has been tested in collaboration with FAO.[31] The Ecuadorian National Secretariat for Development and Planning (SENPLADES) has included the MuSIASEM approach in the training of its personnel.[32]

External links

References

  1. Giampietro M, Mayumi K (2000). Multiple-Scale Integrated Assessment of Societal Metabolism: Introducing the Approach. Population and the Environment 22.2:109-153.
  2. Giampietro M, Mayumi K (2000). Multiple-Scale Integrated Assessments of Societal Metabolism: Integrating Biophysical and Economic Representations Across Scales. Population and the Environment 22.2:155-210.
  3. Giampietro, M., Mayumi, K. and Bukkens, S.G.F. 2001. Multiple-scale integrated assessment of societal metabolism: an analytical tool to study development and sustainability. Environment, Development and Sustainability 3 (4): 275-307.
  4. Giampietro, M., 2003. Multi-scale integrated analysis of agroecosystems (2004). CRC Press.
  5. Gomiero T. and Giampietro M. 2001 Multiple-Scale Integrated Analysis of Farming Systems: The Thuong Lo Commune (Vietnamese Uplands) Case Study Population and Environment 22 (3): 315-352.
  6. Scheidel A., Farrell K.N., Ramos-Martin J., Giampietro M., Mayumi K. 2014 Environment Development Sustainability 16:823–840.
  7. Scheidel A., Farrell K.N., 2015 Small-scale cooperative banking and the production of capital: Reflecting on the role of institutional agreements in supporting rural livelihood in Kampot, Cambodia Ecological Economics 119: 230-240.
  8. Giampietro, M. and Mayumi, K. 2009 The Biofuel Delusion: The fallacy of large scale agro-biofuels production. Earthscan Research Edition, London.
  9. Borzoni, Matteo (2011-09-15). "Multi-scale integrated assessment of soybean biodiesel in Brazil". Ecological Economics. Special Section - Earth System Governance: Accountability and Legitimacy 70 (11): 2028–2038. doi:10.1016/j.ecolecon.2011.06.002.
  10. Diaz-Maurin, François; Giampietro, Mario (2013). "A "Grammar" for assessing the performance of power-supply systems: Comparing nuclear energy to fossil energy". Energy 49 (1): 162–177. doi:10.1016/j.energy.2012.11.014.
  11. Diaz-Maurin, François; Kovacic, Zora (2015). "The unresolved controversy over nuclear power: A new approach from complexity theory". Global Environmental Change 31 (C): 207–216. doi:10.1016/j.gloenvcha.2015.01.014.
  12. 1 2 Giampietro, M., Mayumi, K. and Sorman, A.H. 2012. The Metabolic Pattern of Societies: Where economists fall short. Routledge.
  13. Giampietro, M., Mayumi, K. and Sorman A.H. 2013a Energy Analysis for a Sustainable Future: Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism. Routledge.
  14. Giampietro M, Mayumi K, Ramos-Martín J (2009). Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 34.3:313-322.
  15. Madrid-Lopez C., Cabello V. and Giampietro M. 2013. Water-use sustainability in socio-ecological systems: A multi-scale integrated approach. BioScience 63 (1): 14-24.
  16. Madrid-Lopez C. And Giampietro M. 2015 TheWater Metabolism of Socio-Ecological Systems Reflections and a Conceptual Framework Journal of Industrial Ecology 19(5): 853-865.
  17. Silva-Macher, J. C. (2015), A Metabolic Profile of Peru: An Application of Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to the Mining Sector's Exosomatic Energy Flows. Journal of Industrial Ecology. doi: 10.1111/jiec.12337.
  18. D’Alisa G., Di Nola M.F., Giampietro M. 2012. A multi-scale analysis of urban waste metabolism: density of waste disposed in Campania. Journal of Cleaner Production 35: 59-70.
  19. Chifari et al. in press.
  20. Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu (2015-12-21). "Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China". PLoS ONE 10 (12): e0145405. doi:10.1371/journal.pone.0145405. PMC 4687053. PMID 26690056.
  21. Dai G, Yan L J, Guo H W, Zhang G. 2015. Societal metabolism analysis of China’s four municipalities based on MSIASM theory and carbon emissions from energy consumption. Acta Ecologica Sinica, 35(7):2184-2194.
  22. Serrano-Tovar T. and Giampietro M. 2014. Multi-scale integrated analysis of rural Laos: Studying metabolic patterns of land uses across different levels and scales. Land Use Policy 36: 155-170.
  23. Ramos-Martin J., Cañella-Bolta S., Giampietro M., Gamboa G. 2009 Catalonia's energy metabolism: using the MuSIASEM approach at different scales Energy Policy 37: 4658-4671.
  24. Yong Geng, Ye Liu, Dan Liu, Hengxin Zhao, Bing Xue (2011). Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach. Energy 36: 4799-4808.
  25. Ramos-Martin J. 2001 Historical Analysis of Energy Intensity of Spain: from a “conventional view” to an “integrated assessment” Population and Environment 22 (3): 281- 313.
  26. Falconi-Benitez F. 2001 Integrated Assessment of the recent economic history of Ecuador Population and Environment 22 (3): 257-280.
  27. Velasco R., Ramos-Martin J. and Giampietro M. 2015 The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation Renewable and Sustainable Energy Reviews 41: 1052-1066.
  28. Iorgulescu R. 2014 Poverty, Socioeconomic Metabolism, and the Multi-scale Integrated Analysis Approach Procedia Economics and Finance 8: 407-413.
  29. Iorgulescu, R. I. and Polimeni, J. M., 2009. A multi-scale integrated analysis of the energy use in Romania, Bulgaria, Poland and Hungary, Energy 34(3): 341-347.
  30. Giampietro, M., Aspinall, R.J., Ramos-Martin, J. and Bukkens, S.G.F. (Eds.) 2014. Resource Accounting for Sustainability Assessment: The Nexus between Energy, Food, Water and Land use. Routledge.
  31. Giampietro, M., et al. 2013b. An innovative accounting framework for the Food-energy-water nexus. Application of the MuSIASEM approach to three case studies. Environment and natural resources management Working Paper No. 56. Food and Agriculture Organization of the United Nations, Rome..
  32. "Funcionarios de Senplades viajan a España". Secretaría Nacional de Planificación y Desarrollo. Retrieved 2016-01-18.
This article is issued from Wikipedia - version of the Tuesday, January 26, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.