Self-reconfiguring modular robot

See also: Modular design

Modular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.

For example, a robot made of such components could assume a worm-like shape to move through a narrow pipe, reassemble into something with spider-like legs to cross uneven terrain, then form a third arbitrary object (like a ball or wheel that can spin itself) to move quickly over a fairly flat terrain; it can also be used for making "fixed" objects, such as walls, shelters, or buildings.

In some cases this involves each module having 2 or more connectors for connecting several together. They can contain electronics, sensors, computer processors, memory, and power supplies; they can also contain actuators that are used for manipulating their location in the environment and in relation with each other. A feature found in some cases is the ability of the modules to automatically connect and disconnect themselves to and from each other, and to form into many objects or perform many tasks moving or manipulating the environment.

By saying "self-reconfiguring" or "self-reconfigurable" it means that the mechanism or device is capable of utilizing its own system of control such as with actuators or stochastic means to change its overall structural shape. Having the quality of being "modular" in "self-reconfiguring modular robotics" is to say that the same module or set of modules can be added to or removed from the system, as opposed to being generically "modularized" in the broader sense. The underlying intent is to have an indefinite number of identical modules, or a finite and relatively small set of identical modules, in a mesh or matrix structure of self-reconfigurable modules.

Self-reconfiguration is also different from the concept of self-replication, and self-replication is not necessarily a quality that a self-reconfigurable module or collection of such modules can or must possess. A matrix of N-number of modules does not need to be able to increase the quantity of modules to greater than N to be considered self-reconfigurable. It is sufficient for self-reconfigurable modules to be a device that is produced at a conventional factory, where dedicated machines stamp or mold components, and factory workers on an assembly line assemble the components to build each module.

There are two basic types of methods of segment articulation that self-reconfigurable mechanisms can utilize to reshape their structures, chain reconfiguration and lattice reconfiguration.

Structure and control

Modular robots are usually composed of multiple building blocks of a relatively small repertoire, with uniform docking interfaces that allow transfer of mechanical forces and moments, electrical power and communication throughout the robot.

The modular building blocks usually consist of some primary structural actuated unit, and potentially additional specialized units such as grippers, feet, wheels, cameras, payload and energy storage and generation.

A taxonomy of architectures

Modular self-reconfiguring robotic systems can be generally classified into several architectural groups by the geometric arrangement of their unit (lattice vs. chain). Several systems exhibit hybrid properties, and modular robots have also been classified into the two categories of Mobile Configuration Change (MCC) and Whole Body Locomotion (WBL). [1]

Lattice architecture: 12 modules of the homogeneous lattice system Micro Unit assembled together shown with corresponding grid and docking points network

Modular robotic systems can also be classified according to the way by which units are reconfigured (moved) into place.

Modular robotic systems are also generally classified depending on the design of the modules.

Other modular robotic systems exist which are not self-reconfigurable, and thus do not formally belong to this family of robots though they may have similar appearance. For example, self-assembling systems may be composed of multiple modules but cannot dynamically control their target shape. Similarly, tensegrity robotics may be composed of multiple interchangeable modules but cannot self-reconfigure.

Motivation and inspiration

There are two key motivations for designing modular self-reconfiguring robotic systems.

Autonomous modular robotics in space

Both these advantages have not yet been fully realized. A modular robot is likely to be inferior in performance to any single custom robot tailored for a specific task. However, the advantage of modular robotics is only apparent when considering multiple tasks that would normally require a set of different robots.

The added degrees of freedom make modular robots more versatile in their potential capabilities, but also incur a performance tradeoff and increased mechanical and computational complexities.

The quest for self-reconfiguring robotic structures is to some extent inspired by envisioned applications such as long-term space missions, that require long-term self-sustaining robotic ecology that can handle unforeseen situations and may require self repair. A second source of inspiration are biological systems that are self-constructed out of a relatively small repertoire of lower-level building blocks (cells or amino acids, depending on scale of interest). This architecture underlies biological systems’ ability to physically adapt, grow, heal, and even self replicate – capabilities that would be desirable in many engineered systems.

Application areas

Given these advantages, where would a modular self-reconfigurable system be used? While the system has the promise of being capable of doing a wide variety of things, finding the “killer application” has been somewhat elusive. Here are several examples:

Space exploration

One application that highlights the advantages of self-reconfigurable systems is long-term space missions.[3] These require long-term self-sustaining robotic ecology that can handle unforeseen situations and may require self repair. Self-reconfigurable systems have the ability to handle tasks that are not known a priori, especially compared to fixed configuration systems. In addition, space missions are highly volume- and mass-constrained. Sending a robot system that can reconfigure to achieve many tasks may be more effective than sending many robots that each can do one task.

Telepario

Another example of an application has been coined “telepario” by CMU professors Todd Mowry and Seth Goldstein. What the researchers propose to make are moving, physical, three-dimensional replicas of people or objects, so lifelike that human senses would accept them as real. This would eliminate the need for cumbersome virtual reality gear and overcome the viewing angle limitations of modern 3D approaches. The replicas would mimic the shape and appearance of a person or object being imaged in real time, and as the originals moved, so would their replicas. One aspect of this application is that the main development thrust is geometric representation rather than applying forces to the environment as in a typical robotic manipulation task. This project is widely known as claytronics[4] or Programmable matter (noting that programmable matter is a much more general term, encompassing functional programmable materials, as well).

Bucket of stuff

A third long term vision for these systems has been called “bucket of stuff”. In this vision, consumers of the future have a container of self-reconfigurable modules say in their garage, basement, or attic. When the need arises, the consumer calls forth the robots to achieve a task such as “clean the gutters” or “change the oil in the car” and the robot assumes the shape needed and does the task.

History and state of the art

The roots of the concept of modular self-reconfigurable robots can be traced back to the “quick change” end effector and automatic tool changers in computer numerical controlled machining centers in the 1970s. Here, special modules each with a common connection mechanism could be automatically swapped out on the end of a robotic arm. However, taking the basic concept of the common connection mechanism and applying it to the whole robot was introduced by Toshio Fukuda with the CEBOT (short for cellular robot) in the late 1980s.

The early 1990s saw further development from Greg Chirikjian, Mark Yim, Joseph Michael, and Satoshi Murata. Chirikjian, Michael, and Murata developed lattice reconfiguration systems and Yim developed a chain based system. While these researchers started with from a mechanical engineering emphasis, designing and building modules then developing code to program them, the work of Daniela Rus and Wei-min Shen developed hardware but had a greater impact on the programming aspects. They started a trend towards provable or verifiable distributed algorithms for the control of large numbers of modules.

One of the more interesting hardware platforms recently has been the MTRAN II and III systems developed by Satoshi Murata et al. This system is a hybrid chain and lattice system. It has the advantage of being able to achieve tasks more easily like chain systems, yet reconfigure like a lattice system.

More recently new efforts in stochastic self-assembly have been pursued by Hod Lipson and Eric Klavins. A large effort at Carnegie Mellon University headed by Seth Goldstein and Todd Mowry has started looking at issues in developing millions of modules.

Many tasks have been shown to be achievable, especially with chain reconfiguration modules. This demonstrates the versatility of these systems however, the other two advantages, robustness and low cost have not been demonstrated. In general the prototype systems developed in the labs have been fragile and expensive as would be expected during any initial development.

There is a growing number of research groups actively involved in modular robotics research. To date, about 30 systems have been designed and constructed, some of which are shown below.

Physical systems created
System Class, DOF Author Year
CEBOT Mobile Fukuda et al. (Tsukuba) 1988
Polypod chain, 2, 3D Yim (Stanford) 1993
Metamorphic lattice, 6, 2D Chirikjian (Caltech) 1993
Fracta lattice, 3 2D Murata (MEL) 1994
Fractal Robots lattice, 3D Michael(UK) 1995
Tetrobot chain, 1 3D Hamline et al. (RPI) 1996
3D Fracta lattice, 6 3D Murata et al. (MEL) 1998
Molecule lattice, 4 3D Kotay & Rus (Dartmouth) 1998
CONRO chain, 2 3D Will & Shen (USC/ISI) 1998
PolyBot chain, 1 3D Yim et al. (PARC) 1998
TeleCube lattice, 6 3D Suh et al., (PARC) 1998
Vertical lattice, 2D Hosakawa et al., (Riken) 1998
Crystalline lattice, 4 2D Vona & Rus, (Dartmouth) 1999
I-Cube lattice, 3D Unsal, (CMU) 1999
Micro Unit lattice, 2 2D Murata et al.(AIST) 1999
M-TRAN I hybrid, 2 3D Murata et al.(AIST) 1999
Pneumatic lattice, 2D Inou et al., (TiTech) 2002
Uni Rover mobile, 2 2D Hirose et al., (TiTech) 2002
M-TRAN II hybrid, 2 3D Murata et al., (AIST) 2002
Atron lattice, 1 3D Stoy et al., (U.S Denmark) 2003
S-bot mobile, 3 2D Mondada et al., (EPFL) 2003
Stochastic lattice, 0 3D White, Kopanski, Lipson (Cornell) 2004
Superbot hybrid, 3 3D Shen et al., (USC/ISI) 2004
Y1 Modules chain, 1 3D Gonzalez-Gomez et al., (UAM) 2004
M-TRAN III hybrid, 2 3D Kurokawa et al., (AIST) 2005
AMOEBA-I Mobile, 7 3D Liu JG et al., (SIA) 2005
Catom lattice, 0 2D Goldstein et al., (CMU) 2005
Stochastic-3D lattice, 0 3D White, Zykov, Lipson (Cornell) 2005
Molecubes hybrid, 1 3D Zykov, Mytilinaios, Lipson (Cornell) 2005
Prog. parts lattice, 0 2D Klavins, (U. Washington) 2005
Miche lattice, 0 3D Rus et al., (MIT) 2006
GZ-I Modules chain, 1 3D Zhang & Gonzalez-Gomez (U. Hamburg, UAM) 2006
The Distributed Flight Array lattice, 6 3D Oung & D'Andrea (ETH Zurich) 2008
Evolve chain, 2 3D Chang Fanxi, Francis (NUS) 2008
EM-Cube Lattice, 2 2D An, (Dran Computer Science Lab) 2008
Roombots Hybrid, 3 3D Sproewitz, Moeckel, Ijspeert, Biorobotics Laboratory, (EPFL) 2009
Programmable Matter by Folding Sheet, 3D Wood, Rus, Demaine et al., (Harvard & MIT) 2010
Sambot Hybrid, 3D HY Li, HX Wei, TM Wang et al., (Beihang University) 2010
Moteins Chain, 1 3D Center for Bits and Atoms, (MIT) 2011
ModRED Chain, 4 3D C-MANTIC Lab, (UNO/UNL) 2011
Programmable Smart Sheet Sheet, 3D An & Rus, (MIT) 2011
SMORES Hybrid, 4, 3D Davey, Kwok, Yim (UNSW, UPenn) 2012
Symbrion Hybrid, 3D EU Projects Symbrion and Replicator[5] 2013
ReBiS - Re-configurable Bipedal Snake [6] Chain, 1, 3D Rohan, Ajinkya, Sachin, S. Chiddarwar, K. Bhurchandi (VNIT, Nagpur) 2014

Some current systems

PolyBot G3 (2002)
Polybot G3 Modular self-reconfigurable robot

A chain self-reconfiguration system. Each module is about 50 mm on a side, and has 1 rotational DOF. It is part of the PolyBot modular robot family that has demonstrated many modes of locomotion including walking: biped, 14 legged, slinky-like, snake-like: concertina in a gopher hole, inchworm gaits, rectilinear undulation and sidewinding gaits, rolling like a tread at up to 1.4 m/s, riding a tricycle, climbing: stairs, poles pipes, ramps etc. More information can be found at the polybot webpage at PARC.[7]

M-TRAN III (2005)
Metamorphosis by a self-reconfigurable robot, M-TRAN III

A hybrid type self-reconfigurable system. Each module is two cube size (65 mm side), and has 2 rotational DOF and 6 flat surfaces for connection. It is the 3rd M-TRAN prototypes. Compared with the former (M-TRAN II), speed and reliability of connection is largely improved. As a chain type system, locomotion by CPG (Central Pattern Generator) controller in various shapes has been demonstrated by M-TRAN II. As a lattice type system, it can change its configuration, e.g., between a 4 legged walker to a caterpillar like robot. See the M-TRAN webpage at AIST.[8]

AMOEBA-I (2005)

AMOEBA-I, a three-module reconfigurable mobile robot was developed in Shenyang Institute of Automation (SIA), Chinese Academy of Sciences (CAS) by Liu J G et al..AMOEBA-I has nine kinds of non-isomorphic configurations and high mobility under unstructured environments.Four generations of its platform have been developed and a series of researches have been carried out on their reconfiguration mechanism, non-isomorphic configurations, tipover stability, and reconfiguration planning. Experiments have demonstrated that such kind structure permits good mobility and high flexibility to uneven terrain. Being hyper-redundant, modularized and reconfigurable, AMOEBA-I has many possible applications such as Urban Search and Rescue (USAR) and space exploration. Ref_1: see ; Ref_2: see

Stochastic-3D (2005)

High spatial resolution for arbitrary three-dimensional shape formation with modular robots can be accomplished using lattice system with large quantities of very small, prospectively microscopic modules. At small scales, and with large quantities of modules, deterministic control over reconfiguration of individual modules will become unfeasible, while stochastic mechanisms will naturally prevail. Microscopic size of modules will make the use of electromagnetic actuation and interconnection prohibitive, as well, as the use of on-board power storage.

Three large scale prototypes were built in attempt to demonstrate dynamically programmable three-dimensional stochastic reconfiguration in a neutral-buoyancy environment. The first prototype used electromagnets for module reconfiguration and interconnection. The modules were 100 mm cubes and weighed 0.81 kg. The second prototype used stochastic fluidic reconfiguration and interconnection mechanism. Its 130 mm cubic modules weighed 1.78 kg each and made reconfiguration experiments excessively slow. The current third implementation inherits the fluidic reconfiguration principle. The lattice grid size is 80 mm, and the reconfiguration experiments are under way.[9]


Molecubes in motion

Molecubes (2005)

This hybrid self-reconfiguring system was built by the Cornell Computational Synthesis Lab to physically demonstrate artificial kinematic self-reproduction. Each module is a 0.65 kg cube with 100 mm long edges and one rotational degree of freedom. The axis of rotation is aligned with the cube's longest diagonal. Physical self-reproduction of a three- and a four-module robots was demonstrated. It was also shown that, disregarding the gravity constraints, an infinite number of self-reproducing chain meta-structures can be built from Molecubes. More information can be found at the CCSL Self-Replication webpage.


The Programmable Parts (2005)

The programmable parts are stirred randomly on an air-hockey table by randomly actuated air jets. When they collide and stick, they can communicate and decide whether to stay stuck, or if and when to detach. Local interaction rules can be devised and optimized to guide the robots to make any desired global shape. More information can be found at the programmable parts web page.


SuperBot (2006)

The SuperBot modules fall into the hybrid architecture. The modules have three degrees of freedom each. The design is based on two previous systems: Conro (by the same research group) and MTRAN (by Murata et al.). Each module can connect to another module through one of its six dock connectors. They can communicate and share power through their dock connectors. Several locomotion gaits have been developed for different arrangements of modules. For high-level communication the modules use hormone-based control, a distributed, scalable protocol that does not require the modules to have unique ID's.


Miche (2006)

The Miche system is a modular lattice system capable of arbitrary shape formation. Each module is an autonomous robot module capable of connecting to and communicating with its immediate neighbors. When assembled into a structure, the modules form a system that can be virtually sculpted using a computer interface and a distributed process. The group of modules collectively decide who is on the final shape and who is not using algorithms that minimize the information transmission and storage. Finally, the modules not in the structure let go and fall off under the control of an external force, in this case gravity. More details at Miche (Rus et al.).


The Distributed Flight Array (2009) The Distributed Flight Array is a modular robot consisting of hexagonal-shaped single-rotor units that can take on just about any shape or form. Although each unit is capable of generating enough thrust to lift itself off the ground, on its own it is incapable of flight much like a helicopter cannot fly without its tail rotor. However, when joined together, these units evolve into a sophisticated multi-rotor system capable of coordinated flight and much more. More information can be found here.

A 10-module configuration of the Distributed Flight Array in flight.

Roombots (2009)

Roombots have a hybrid architecture. Each module has three degree of freedom, two of them using the diametrical axis within a regular cube, and a third (center) axis of rotation connecting the two spherical parts. All three axes are continuously rotatory. The outer Roombots DOF is using the same axis-orientation as Molecubes, the third, central Roombots axis enables the module to rotate its two outer DOF against each other. This novel feature enables a single Roombots module to locomote on flat terrain, but also to climb a wall, or to cross a concave, perpendicular edge. Convex edges require the assembly of at least two modules into a Roombots "Metamodule". Each module has ten available connector slots, currently two of them are equipped with an active connection mechanism based on mechanical latches. Roombots are designed for two tasks: to eventually shape objects of daily life, e.g. furniture, and to locomote, e.g. as a quadruped or a tripod robot made from multiple modules. More information can be found at Biorobotics Laboratory Roombots webpage.


Sambot (2010)

Being inspired form social insects, multicellar organism and mophogenetic robots. The aim of the Sambot is to develop swarm robotics and conduct research on the swarm intelligenc, self-assembly and co-evolution of the body and brain for autonomous morphogeneous. Differing from swarm robot, self-reconfigurable robot and morphgenetic robot, the research focuses on self-assembly swarm modular robots that interact and dock as an autonomous mobile module with others to achieve swarm intelligence and furtherly discuss the autonomous construction in space station and exploratary tools and artificial complex structures. Each Sambot robot can run as an autonomos individual in wheel and besides, using combination of the sensors and docking mechanism, the robot can interact and dock with the environments and other robots. By the advantage of motion and connection, Sambot swarms can aggregate into a symbiotic or whole organism and generate locomotion as the bionic articular robots. In this case, some self-assembling, self-organizing, self-reconfigurating, and self-repairing function and research are available in design and application view. Inside the modular robot whose size is 80(W)X80(L)X102(H) mm, MCU (ARM and AVR), communication (Zigbee), sensors, power, IMU, positioning modules are embeded. More information can be found at Self-assembly Swarm Modular Robots


Moteins (2011)
Motein

It is mathematically proven that physical strings of simple shapes can be folded into any continuous area or volumetric shape. Moteins employ such shape-universal folding strategies, with one or two degrees of freedom and simple actuators with only two or three states.[10]


Quantitative accomplishment

Challenges, solutions, and opportunities

Since the early demonstrations of early modular self-reconfiguring systems, the size, robustness and performance has been continuously improving. In parallel, planning and control algorithms have been progressing to handle thousands of units. There are, however, several key steps that are necessary for these systems to realize their promise of adaptability, robustness and low cost. These steps can be broken down into challenges in the hardware design, in planning and control algorithms and in application. These challenges are often intertwined.

Hardware design challenges

The extent to which the promise of self-reconfiguring robotic systems can be realized depends critically on the numbers of modules in the system. To date, only systems with up to about 50 units have been demonstrated, with this number stagnating over almost a decade. There are a number of fundamental limiting factors that govern this number:

Planning and control challenges

Though algorithms have been developed for handling thousands of units in ideal conditions, challenges to scalability remain both in low-level control and high-level planning to overcome realistic constraints:

Application challenges

Though the advantages of Modular self-reconfiguring robotic systems is largely recognized, it has been difficult to identify specific application domains where benefits can be demonstrated in the short term. Some suggested applications are

Grand Challenges

Several robotic fields have identified ‘’Grand Challenges’’ that act as a catalyst for development and serve as a short-term goal in absence of immediate ‘’killer apps’’. The Grand Challenge is not in itself a research agenda or milestone, but a means to stimulate and evaluate coordinated progress across multiple technical frontiers. Several Grand Challenges have been proposed for the modular self-reconfiguring robotics field:

Inductive Transducers

A unique potential solution that can be exploited is the use of inductors as transducers. This could be useful for dealing with docking and bonding problems. At the same time it could also be beneficial for its capabilities of docking detection (alignment and finding distance), power transmission, and (data signal) communication. A proof-of-concept video can be seen here. The rather limited exploration down this avenue is probably a consequence of the historical lack of need in any applications for such an approach.

Google Groups

Self-Reconfiguring and Modular Technology is a group for discussion of the perception and understanding of the developing field.robotics.

Modular Robotics Google Group is an open public forum dedicated to announcements of events in the field of Modular Robotics. This medium is used to disseminate calls to workshops, special issues and other academic activities of interest to modular robotics researchers. The founders of this Google group intend it to facilitate the exchange of information and ideas within the community of modular robotics researchers around the world and thus promote acceleration of advancements in modular robotics. Anybody who is interested in objectives and progress of Modular Robotics can join this Google group and learn about the new developments in this field.

Websites dedicated specifically to exploring this technology

See also

Further reading

References

  1. P. Moubarak, et al., Modular and Reconfigurable Mobile Robotics, Journal of Robotics and Autonomous Systems, 60 (12) (2012) 1648 – 1663
  2. N. Brener, F. Ben Amar, and P. Bidaud, "Characterization of Lattice Modular Robots by Discrete Displacement Groups", in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tapei, Taiwan, October 2010.
  3. "Modular Reconfigurable Robots in Space Applications" (PDF). Palo Alto Research Center (PARC). 2004.
  4. http://www.cs.cmu.edu/~claytronics/
  5. Levi, P.; Meister, E.; van Rossum, A.C.; Krajnik, T.; Vonasek, V.; Stepan, P.; Liu, W.; Capparrelli, F. (31 March 2014). "A cognitive architecture for modular and self-reconfigurable robots": 465–472. doi:10.1109/SysCon.2014.6819298.
  6. Rohan Thakker, Ajinkya Kamat, Sachin Bharambe, Shital Chiddarwar and K. M. Bhurchandi. “ReBiS- Reconfigurable Bipedal Snake Robot.” In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.
  7. http://www.parc.com/modrobots/
  8. http://unit.aist.go.jp/is/frrg/dsysd/mtran3/
  9. the Cornell Creative Machines Lab (CCSL) Stochastic Modular Robotics.
  10. Cheung, K. C., Demaine, E. D., Bachrach, J. R., and Griffith, S., “Programmable Assembly With Universally Foldable Strings (Moteins),” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 718-729 (2011).
  11. "Smart sand and robot pebbles". MIT.
  12. "DPRSim - The Dynamic Physical Rendering Simulator". Intel.
  13. Winkler, L.; Vonasek, V.; Worn, H.; Preucil, L., "Robot3D — A simulator for mobile modular self-reconfigurable robots," IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp.464,469, 13-15 Sept. 2012 doi: 10.1109/MFI.2012.6343016

External links

Wikibooks has a book on the topic of: Robotics: Exotic Robots: Modular and fractal Robots
This article is issued from Wikipedia - version of the Thursday, January 28, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.