Minimal prime ideal

In mathematics, especially in the area of algebra known as commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes.

Definition

A prime ideal P is said to be a minimal prime ideal over an ideal I if it is minimal among all prime ideals containing I. (Note that we do not exclude I even if it is a prime ideal.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal.

A minimal prime ideal over an ideal I in a Noetherian ring R is precisely a minimal associated prime (also called isolated prime) of R/I; this follows for instance from the primary decomposition of I.

Examples

Properties

All rings are assumed to be commutative and unital.

References


This article is issued from Wikipedia - version of the Friday, February 13, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.