Miller cylindrical projection

A Miller projection of the Earth.

The Miller cylindrical projection is a modified Mercator projection, proposed by Osborn Maitland Miller (18971979) in 1942. The latitude is scaled by a factor of 45, projected according to Mercator, and then the result is multiplied by 54 to retain scale along the equator.[1] Hence:

x = \lambda
y = \frac{5}{4}\ln\left[\tan\left(\frac{\pi}{4} + \frac{2\varphi}{5}\right)\right] = \frac{5}{4}\sinh^{-1}\left(\tan\frac{4\varphi}{5}\right)

or inversely,

\lambda = x
\varphi = \frac{5}{2}\tan^{-1}\left(e^\frac{4 y}{5}\right) - \frac{5\pi}{8} = \frac{5}{4}\tan^{-1}\left(\sinh\frac{4 y}{5}\right)

where λ is the longitude from the central meridian of the projection, and φ is the latitude.[2] Meridians are thus about 0.733 the length of the equator.

In GIS applications, this projection is known as: "EPSG:54003 - World Miller Cylindrical"

See also

References

  1. Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 179, 183, ISBN 0-226-76747-7.
  2. "Miller Cylindrical Projection". Wolfram MathWorld. Retrieved 25 March 2015.

External links


This article is issued from Wikipedia - version of the Thursday, January 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.