Mathematical structure

For the notion of "structure" in mathematical logic, see Structure (mathematical logic).

In mathematics, a structure on a set, or more generally a type, consists of additional mathematical objects that, in some manner, attach (or relate) to the set, endowing the collection with meaning or significance.

A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and categories.

Sometimes, a set is endowed with more than one structure simultaneously; this enables mathematicians to study it more richly. For example, an order induces a topology. As another example, if a set both has a topology and is a group, and the two structures are related in a certain way, the set becomes a topological group.

Mappings between sets which preserve structures (so that structures in the domain are mapped to equivalent structures in the codomain) are of special interest in many fields of mathematics. Examples are homomorphisms, which preserve algebraic structures; homeomorphisms, which preserve topological structures; and diffeomorphisms, which preserve differential structures.

N. Bourbaki suggested an explication of the concept "mathematical structure" in their book "Theory of Sets" (Chapter 4. Structures) and then defined on that base, in particular, a very general concept of isomorphism.

Example: the real numbers

The set of real numbers has several standard structures:

There are interfaces among these:

See also

References

This article is issued from Wikipedia - version of the Sunday, April 19, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.