Lysosomal storage disease

Lysosomal storage disease

Micrograph of Gaucher disease, with cells that have the characteristic crumpled tissue paper-like cytoplasm. H&E stain.
Classification and external resources
Specialty endocrinology
ICD-10 E75-E77
MeSH D016464

Lysosomal storage diseases (LSDs; /ˌlsəˈsməl/) are a group of approximately 50 rare inherited metabolic disorders that result from defects in lysosomal function.[1] Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective, because of a mutation, the large molecules accumulate within the cell, eventually killing it.[2]

Lysosomal storage disorders are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of lipids, glycoproteins (sugar containing proteins) or so-called mucopolysaccharides. Individually, LSDs occur with incidences of less than 1:100,000; however, as a group the incidence is about 1:5,000 - 1:10,000. Most of these disorders are autosomal recessively inherited such as Niemann-Pick disease, type C, however a few are X-linked recessively inherited, such as Fabry disease and Hunter syndrome (MPS II).

The lysosome is commonly referred to as the cell’s recycling center because it processes unwanted material into substances that the cell can utilize. Lysosomes break down this unwanted matter via enzymes, highly specialized proteins essential for survival. Lysosomal disorders are usually triggered when a particular enzyme exists in too small an amount or is missing altogether. When this happens, substances accumulate in the cell. In other words, when the lysosome does not function normally, excess products destined for breakdown and recycling are stored in the cell.

Like other genetic diseases, individuals inherit lysosomal storage diseases from their parents. Although each disorder results from different gene mutations that translate into a deficiency in enzyme activity, they all share a common biochemical characteristic – all lysosomal disorders originate from an abnormal accumulation of substances inside the lysosome.

Lysosomal storage diseases affect mostly children and they often die at a young and unpredictable age, many within a few months or years of birth. Many other children die of this disease following years of suffering from various symptoms of their particular disorder.


Classification

Standard classification

The lysosomal storage diseases are generally classified by the nature of the primary stored material involved, and can be broadly broken into the following: (ICD-10 codes are provided where available)

Also, glycogen storage disease type II (Pompe disease) is also a defect in lysosomal metabolism,[3] although it is otherwise classified into E74.0 in ICD-10. Cystinosis is a lysosomal storage disease characterized by the abnormal accumulation of the amino acid cystine.

By type of defect protein

Alternatively to the protein targets, lysosomal storage diseases may be classified by the type of protein that is deficient and is causing buildup.

Type of defect protein Disease examples Deficient protein
Lysosomal enzymes primarily Tay-Sachs disease, I-cell disease,[4] Sphingolipidoses
(e.g., gangliosidosis: Gaucher, Niemann-Pick disease and Glycolipids: Metachromatic Leukodystrophy)
Various
Posttranslational modification of enzymes Multiple sulfatase deficiency Multiple sulfatases
Membrane transport proteins Mucolipidosis type II and IIIA N-acetylglucosamine-1-phosphate transferase
Enzyme protecting proteins Galactosialidosis Cathepsin A
Soluble nonenzymatic proteins GM2-AP deficiency, variant AB, Niemann-Pick disease, type C2 GM2-AP, NPC2
Transmembrane proteins SAP deficiency Sphingolipid activator proteins
Niemann-Pick disease, type C1 NPC1
Salla disease Sialin
Unless else specified in boxes, then ref is:[5]

Lysosomal Storage Disorders

Following are lysosomal storage diseases:

Sphingolipidoses

Mucopolysaccharidoses

Mucolipidosis

Lipidoses

Oligosaccharide

Lysosomal Transport Diseases

Glycogen Storage Diseases

Other

Signs and symptoms

The symptoms of lysosomal storage disease vary, depending on the particular disorder and other variables like the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness and/or blindness. Some people with lysosomal storage disease have enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.

Diagnosis

The majority of patients are initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutation(s) is known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.

Treatment

There are no cures for lysosomal storage diseases and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success.[6][7] In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the accumulation of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.[8]

Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase. Because of this it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease.[9][10] Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores.[11] Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.

History

Tay-Sachs disease was the first of these disorders to be described, in 1881, followed by Gaucher disease in 1882. In the late 1950s and early 1960s, de Duve and colleagues, using cell fractionation techniques, cytological studies and biochemical analyses, identified and characterized the lysosome as a cellular organelle responsible for intracellular digestion and recycling of macromolecules. This was the scientific breakthrough that would lead to the understanding of the physiological basis of the Lysosomal Storage Diseases. Pompe disease was the first disease to be identified as an LSD in 1963, with L. Hers reporting the cause as a deficiency of α-glucosidase. Hers also suggested that other diseases, such as the Mucopolysaccharidosis, might be due to enzyme deficiencies.

See also

References

  1. Winchester B, Vellodi A, Young E (2000). "The molecular basis of lysosomal storage diseases and their treatment". Biochem. Soc. Trans. 28 (2): 150–4. PMID 10816117.
  2. Reece, Jane; Campbell, Neil (2002). Biology. San Francisco: Benjamin Cummings. pp. 121–122. ISBN 0-8053-6624-5.
  3. eMedicine Specialties > Neurology > Pediatric Neurology > Lysosomal Storage Disease Author: Noah S Scheinfeld, MD, JD, FAAD. Coauthor(s): Rowena Emilia Tabamo, MD; Brian Klein, MD. Updated: Sep 25, 2008
  4. Medical Physiology (2nd Edition) – W. Boron & E. Boulpaep, Saunders Press
  5. Table 7-6 in:Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson (2007). Robbins Basic Pathology. Philadelphia: Saunders. ISBN 1-4160-2973-7. 8th edition.
  6. Clarke JT, Iwanochko RM (2005). "Enzyme replacement therapy of Fabry disease". Mol. Neurobiol. 32 (1): 043–050. doi:10.1385/MN:32:1:043. PMID 16077182.
  7. Bruni S, Loschi L, Incerti C, Gabrielli O, Coppa GV (2007). "Update on treatment of lysosomal storage diseases". Acta Myol 26 (1): 87–92. PMC 2949325. PMID 17915580.
  8. Ponder KP, Haskins ME (2007). "Gene therapy for mucopolysaccharidosis". Expert Opin Biol Ther 7 (9): 1333–1345. doi:10.1517/14712598.7.9.1333. PMC 3340574. PMID 17727324.
  9. McNeill, Alisdair; Magalhaes, Joana; Shen, Chengguo; Chau, Kai-Yin; Hughes, Derralyn; Mehta, Atul; Foltynie, Tom; Cooper, J. Mark; Abramov, Andrey Y. (2014-05-01). "Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells". Brain 137 (5): 1481–1495. doi:10.1093/brain/awu020. ISSN 0006-8950. PMC 3999713. PMID 24574503.
  10. Albin, Roger L.; Dauer, William T. (2014-05-01). "Magic shotgun for Parkinson’s disease?". Brain 137 (5): 1274–1275. doi:10.1093/brain/awu076. ISSN 0006-8950. PMID 24771397.
  11. Fois, Giorgio; Hobi, Nina; Felder, Edward; Ziegler, Andreas; Miklavc, Pika; Walther, Paul; Radermacher, Peter; Haller, Thomas; Dietl, Paul. "A new role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca2+ release from acidic Ca2+ stores". Cell Calcium 58 (6): 628–637. doi:10.1016/j.ceca.2015.10.002.

External links

This article is issued from Wikipedia - version of the Friday, January 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.