Lucas number

Not to be confused with Lucas sequences, a generic class of sequences to which the Lucas numbers belong.

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (184291), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

Definition

Similar to the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are L0 = 2 and L1 = 1 as opposed to the first two Fibonacci numbers F0 = 0 and F1 = 1. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties.

The Lucas numbers may thus be defined as follows:

 
  L_n :=
  \begin{cases}
    2               & \text{if } n = 0; \\
    1               & \text{if } n = 1; \\
    L_{n-1}+L_{n-2} & \text{if } n > 1. \\
   \end{cases}

The sequence of Lucas numbers is:

2,\;1,\;3,\;4,\;7,\;11,\;18,\;29,\;47,\;76,\;123,\; \ldots\;(sequence A000032 in OEIS).

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

Extension to negative integers

Using Ln2 = Ln  Ln1, one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence:

..., 11, 7, 4, 3, 1, 2, 1, 3, 4, 7, 11, ... (terms L_n for -5\leq{}n\leq5 are shown).

The formula for terms with negative indices in this sequence is

L_{-n}=(-1)^nL_n.\!

Relationship to Fibonacci numbers

The Lucas numbers are related to the Fibonacci numbers by the identities

Their closed formula is given as:

L_n = \varphi^n + (1-\varphi)^{n} = \varphi^n + (- \varphi)^{- n}=\left({ 1+ \sqrt{5} \over 2}\right)^n + \left({ 1- \sqrt{5} \over 2}\right)^n\, ,

where \varphi is the golden ratio. Alternatively, as for n>1 the magnitude of the term (-\varphi)^{-n} is less than 1/2, L_n is the closest integer to \varphi^n or, equivalently, the integer part of \varphi^n+1/2, also written as \lfloor \varphi^n+1/2 \rfloor.

Conversely, since Binet's formula gives:

F_n = \frac{\varphi^n - (1-\varphi)^{n}}{\sqrt{5}}\, ,

we have:

\varphi^n = {{L_n + F_n \sqrt{5}} \over 2}\, .

Congruence relations

If Fn 5 is a Fibonacci number then no Lucas number is divisible by Fn.

Ln is congruent to 1 mod n if n is prime, but some composite values of n also have this property.

Lucas primes

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in OEIS).

For these ns are

0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... (sequence A001606 in OEIS).

If Ln is prime then n is either 0, prime, or a power of 2.[1] L2m is prime for m = 1, 2, 3, and 4 and no other known values of m.

Lucas polynomials

In the same way as Fibonacci polynomials are derived from the Fibonacci numbers, the Lucas polynomials Ln(x) are a polynomial sequence derived from the Lucas numbers.

See also

References

External links

This article is issued from Wikipedia - version of the Wednesday, November 18, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.