List of thermal conductivities

In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat.

Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.

Mixtures may have variable thermal conductivities due to composition.

Note that this table shows thermal conductivity in units of watts per metre per Kelvin (W·m−1·K−1). This is the current metric unit of measurement. Prior to this, however, thermal conductivity was measured in terms of BTUs per foot per hour per degree Fahrenheit. A value for the former can be computed from the latter by multiplying by 1.728.[1] To convert from W/m K to Btu/hr.ft.F multiply by 0.5777892052

Material Thermal conductivity [W·m−1·K−1] Temperature [K] Electrical conductivity @ 293 K
[Ω−1·m−1]
Notes
Acrylic Glass (Plexiglas V045i) 0.17[2]-0.19[2]-0.2[3] 296[2] 7.143E-15[2] - 5.0E-14[2]
Air 0.024[4][5][6]-0.025[7]
0.0262 (1 bar)[8]
0.0457 (1 bar)[8]
273[4][5]-293[7]-298[6]
300[8]
600[8]
hiAerosols2.95[9]-loAerosols7.83[9]×10−15 (78.03%N2,21%O2,+0.93%Ar,+0.04%CO2) (1 atm)
Alcohols OR Oils 0.1[6][7]-0.110[10]-0.21[6][7]-0.212[10] 293[7]-298[6]-300[10]
Aluminium, pure 204.3[11]-205[4]-220[12]-237[7][13][14][15]-250[6]
214.6[11]
249.3[11]
293[7][11]-298[6][14][15]
366[11]
478[11]
37,450,000[14] - 37,740,000[16]
Aluminium nitride 170[13]-175[17]-190[17] 293[17] 1×10^−11[17]
Aluminium oxide, pure 26[18]-30[7]-35[18]-39[13]-40[19] 293[7][18][19] 1×10^−12-[18][19]
Ammonia, saturated 0.507[10] 300[10]
Argon 0.016[6]-0.01772[15]-0.0179[15][20] 298[6][15]-300[15][20]
Beryllium oxide 218[13]-260[21]-300[21] 293[21] 1×10^−12[21]
Bismuth 7.97[15] 300[15]
Brass Cu63% 125[22] 296[22] 15,150,000[22] - 16,130,000[22] (Cu63%, Zn37%)
Brass Cu70% 109[4][23] - 121[23] 293[4]-296[23] 12,820,000[23] - 16,130,000[23] (Cu70%, Zn30%)
Brick 0.15[4]-0.6[4]-0.69[6]-1.31[6] 293[4]-298[6]
Bronze 26[12]
42[24]-50[11][24]
293[11]-296[24]
5,882,000[24] - 7,143,000[24]
Sn25%[12]
(Cu89%, Sn11%)[24]
Calcium silicate 0.063[25] 373[25]
Carbon dioxide 0.0146[6]-0.01465[26]-0.0168[20](sat. liquid 0.087[27]) 298[6]-273[26]-300[20](293[27])
Carbon nanotubes, bulk 2.5 (multiwall)[28] - 35 (single wall, disordered mats)[28] - 200(single wall, aligned mats)[28] 300[28] "bulk" refers to a group of nanotubes either arranged or disordered, for a single nanotube, see "carbon nanotube, single" .[28]
Carbon nanotube, single 3180 (multiwall)[29][30]-3500 (single wall)[31]
(SWcalc.6,600[29][32]-37,000[29][32])
320[29][30]-300[31]
(300[29][32]-100[29][32])
(Lateral)10−16[33] - (Ballistic)108[33]) values only for one single SWNT(length:2.6 μm, diameter:1.7 nm) and CNT. "Single", as opposed to "bulk" quantity (see "carbon nanotubes, bulk" ) of many nanotubes, which should not be confused with the denomination of nanotubes themselves which can be singlewall(SWNT) or multiwall(CNT)[28]
Concrete 0.8[4] - 1.28[7] - 1.65 [34] - 2.5 [34] 293[7] ~61-67%CaO
Copper, pure 385[4]-386[11][12]-390[7]-401[6][15][35]
368.7[11]
353.1[11]
293[4][6][7][11][15][35]
573[11]
873[11]
59,170,000[35] - 59,590,000[16] International Annealed Copper Standard (IACS) pure =1.7×10−8Ω•m
=58.82×106Ω−1•m−1

For main article, see: Copper in heat exchangers.

Cork 0.04[4] - 0.07[7] 293[7]
Cotton or Plastic Insulation-foamed 0.03[6][7] 293[7]
Diamond, impure 1,000[4][36] 273[36] - 293[4] 1×10^−16~[37] Type I (98.1% of Gem Diamonds) (C+0.1%N)
Diamond, natural 2,200[38] 293[38] 1×10^−16~[37] Type IIa (99%12C and 1%13C)
Diamond, isotopically enriched 3,320[38]-41,000[29][39](99.999% 12C calc.200,000[39]) 293[38]-104[29][39](~80[39]) (Lateral)10−16[37] - (Ballistic)108[37] Type IIa isotopically enriched (>99.9%12C)
Epoxy, thermally conductive 0.682[40] - 1.038 - 1.384[41] - 4.8[42]
Expanded polystyrene - EPS 0.03[6]-0.033[4][6][36]((PS Only)0.1[43]-0.13[43]) 98[36]-298[6][36](296[43]) 1×10^−14[43] (PS+Air+CO2+CnH2n+x)
Extruded polystyrene - XPS 0.029 - 0.39 98-298
Fiberglass or Foam-glass 0.045[7] 293[7]
Gallium arsenide 56[36] 300[36]
Glass 0.8[4]-0.93[7](SiO2pure1[13]-SiO296%1.2[44]-1.4[44])
Corning Code 7740* 0.58[45]
0.90[45]
1.11[45]
1.25[45]
1.36[45]
1.50[45]
1.62[45]
1.89[45]
293[4][7][44]
100[45]
200[45]
300[45]
400[45]
500[45]
600[45]
700[45]
800[45]
10−14[46][47]-10−12[44]-10−10[46][47] <1% Iron oxides
*Corning Code 7740 is pyrex glass as known to the National Bureau of Standards in 1966 and at that time the composition was about 80.6%SiO2, 13%B2O3, 4.3%Na2O and 2.1%Al2O3.[45] Similar glasses have a coefficient of linear expansion of about 3 parts per million per Kelvin at 20°Celsius.[48]
Glycerol 0.285[10]-0.29[7] 300[10]-293[7]
Gold, pure 314[4]-315[11]-318[12][15][49] 293[11]-298[15][49] 45,170,000[16] - 45,450,000[49]
Granite 1.73[50] - 3.98[50] (72%SiO2+14%Al2O3+4%K2O etc.)
Graphene (4840±440)[51] - (5300±480)[51] 293[51] 100,000,000[52]
Graphite, natural 25-470[53] 293[53] 5,000,000-30,000,000[53]
Helium II >100000[54] 2.2 liquid Helium in its superfluid state below 2.2 K
Hydrogen 0.1819[55] 290 Hydrogen gas at room temperature.
Ice 1.6[4]-2.1[7]-2.2[36]-2.22[56] 293[4][7] - 273[36][56]
Indium phosphide 80[36] 300[36]
Iron, pure 71.8[12]-72.7[11]-79.5[4]-80[6]-80.2[36]-80.4[15][57]
55.4[11]
34.6[11]
293[4][11]-298[6]-300[15][36][57]
573[11]
1273[11]
9,901,000[57] - 10,410,000[16]
Iron, cast 55[6][12] 298[6] (Fe+(2-4)%C+(1-3)%Si)
Lead, pure 34.7[4][11]-35.0[6][12]-35.3[15][58]
29.8[11]
293[4][11]-298[6]-300[15][58]
573[11]
4,808,000[16] - 4,854,000[58]
Limestone 1.26[50] - 1.33[50] Mostly CaCO3
Marble 2.07[50]-2.08[6]-2.94[6][50] 298[6] Mostly CaCO3
Methane 0.030[6]-0.03281[59] 298[6]-273[59]
Mineral Insulation or Wool(Felt/Glass/Rock) 0.04[4][6][7] 293[7]-298[6]
Nickel 90.9[15]-91[6] 298[6][15]
Nitrogen, pure 0.0234[4]-0.024[6]-0.02583[15]-0.026[20][36] 293[4]-298[6]-300[15][20][36] (N2) (1 atm)
Oxygen, pure (gas) 0.0238[4]-0.024[6]-0.0263[20]-0.02658[15] 293[4]-298[6]-300[15][20] (O2) (1 atm)
Paper 0.05[6] 298[6]
Perlite, (1 atm) 0.031[6] 298[6]
Perlite in partial vacuum 0.00137[6] 298[6]
Plastic, fiber-reinforced 0.23[60] - 0.7[60] - 1.06[7] 293[7] - 296[60] 10−15[60] - 100[60] 10-40%GF or CF
Polyethylene High Density 0.42[6] - 0.51[6] 298[6]
Polymer, High-Density 0.33[60] - 0.52[60] 296[60] 10−16[60] - 102[60]
Polymer, Low-density 0.04[60] - 0.16[7] - 0.25[7] - 0.33[60] 293[7] - 296[60] 10−17[60] - 100[60]
Polyurethane foam 0.02[6] - 0.021[6] 298[6]
Quartz (single crystal) 12[36] \parallel to c axis, 06.8[36] \perp to c axis
11.1[61] \parallel to c axis, 5.88[61] \perp to c axis
9.34[61] \parallel to c axis, 5.19[61] \perp to c axis
8.68[61] \parallel to c axis, 4.50[61] \perp to c axis
300[36]
311[61]
366[61]
422[61]
The noted authorities have reported some values in three digits as cited here in metric translation but they have not demonstrated three digit measurement.[62]
Quartz-Fused or Vitreous Silica or Fused Silica 1.46[63]-3[7]
1.4[36]
England 0.84[64]
1.05[64]
1.20[64]
1.32[64]
1.41[64]
1.48[64]
America 0.52[65]
1.13[65]
1.23[65]
1.40[65]
1.42[65]
1.50[65]
1.53[65]
1.59[65]
293[7][63]
323[36]
123[64]
173[64]
223[64]
273[64]
323[64]
373[64]
100[65]
200[65]
223[65]
293[65]
323[65]
373[65]
400[65]
500[65]
1.333E-18[46] - 10−16[63]
Rice hulls (ash) 0.062[66]
Rice hulls (whole) 0.0359[66]
Rubber (92%) 0.16[36] 303[36] 1×10^−13~[46]
Sandstone 1.83[50] - 2.90[50]
2.1[67] - 3.9[67]
~95-71%SiO2
~98-48%SiO2, ~16-30% Porosity
Silica Aerogel 0.003[36](carbon black9%~0.0042[68])-0.008[68]-0.017[68]-0.02[6]-0.03[36] 98[36] - 298[6][36] Foamed Glass
Silver, pure 406[4]-407[11]-418[12]
427[13]-429[6][15][36][69]-430[15]
293[4][11]
298[6][15][69]-300[15][36]
61,350,000[69] - 63,010,000[16] Highest electrical conductivity of any metal
Silver, sterling 361[70]
Snow, dry 0.05[6]-0.11[4]-0.25[6] 273[6]
Sodium chloride 35.1 - 6.5 - 4.85[71] 80 - 289 - 400[71]
Soil, dry w/ organic matter 0.15[7][72]-1.15[72]-2[7] 293[7] composition may vary
Soil, saturated 0.6[7]-4[7] 293[7] composition may vary
Solder, Sn/63% Pb/37% 50[73]
Lead free solder, Sn/95.6% Ag/3.5% Cu/0.9%, Sn/95.5% Ag/3.8% Cu/0.7% (SAC) ~60[73]
Steel, carbon 36[11][12]-43[6] 50.2[4]-54[6][11][12] 293[4][11]-298[6] (Fe+(1.5-0.5)%C)
Steel, stainless 16.3[12][74]-16.7[75]-18[76]-24[76] 296[74][75][76] 1,176,000[75] - 1,786,000[76] (Fe, Cr12.5-25%, Ni0-20%, Mo0-3%, Ti0-trace)
Thermal grease 0.4 - 3.0
Thermal tape 0.60[77]
Titanium, pure 15.6[12]-19.0[11]-21.9[15][78]-22.5[11] 293[11]-300[15][78] 1,852,000[78] - 2,381,000[16]
Titanium Alloy 5.8[79] 296[79] 595,200[79] (Ti+6%Al+4%V)
Tungsten, Pure 173[37] 293[37] 18,940,000[37]
Water 0.563[80]-0.596[80]-0.6[4][7]-0.609[10] 273[80]-293[4][7][80]-300[10] Pure10−6[37]-Sweet10−3±1[37]-Sea1[80] <4[80]%(NaCl+MgCl2+CaCl2)
Water vapor 0.016[6]-0.02479 (101.3 kPa)[81]
0.0471 (1 bar)[8]
293[81]-398[6]
600[8]
Wood, +>=12% water 0.09091[82]-0.16[36]-0.21[82]-0.4[7] 298[36]-293[7] Species-Variable[82]
Wood, oven-dry 0.04[4]-0.055[6]-0.07692[82]-0.12[4]-0.17[6][82] 293[4]-298[6] Balsa[6]-Cedar[82]-Hickory[82]/Oak[6]
Zinc, Pure 116[37] 293[37] 16,950,000[37]
Zinc oxide 21[13]
Material Thermal conductivity [W·m−1·K−1] Temperature [K] Electrical conductivity @ 293 K [Ω−1·m−1] Notes

See also

References

  1. Roger N. Wright (3 December 2010). "Wire Technology: Process Engineering and Metallurgy". Elsevier: 281. ISBN 978-0-12-382093-8{{inconsistent citations}}
  2. 1 2 3 4 5 http://www.goodfellow.com/E/Polymethylmethacrylate.html
  3. http://www.plexiglas.com/tds/4b.pdf
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 HyperPhysics, most from Young, Hugh D., University Physics, 7th Ed., Addison Wesley, 1992. Table 15-5. (most data should be at 293 K (20 °C; 68 °F))
  5. 1 2 http://www.engineeringtoolbox.com/air-properties-d_156.html
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Hukseflux Thermal Sensors
  8. 1 2 3 4 5 6 "Thermal conductivity of gases", CRC Handbook, p. 6–195.
  9. 1 2 Pawar, S. D.; Murugavel, P.; Lal, D. M. (2009). "Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean". Journal of Geophysical Research 114: D02205. Bibcode:2009JGRD..11402205P. doi:10.1029/2007JD009716.
  10. 1 2 3 4 5 6 7 8 9 http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 http://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html
  12. 1 2 3 4 5 6 7 8 9 10 11 12 13 http://www.engineersedge.com/properties_of_metals.htm
  13. 1 2 3 4 5 6 7 Greg Becker, Chris Lee, and Zuchen Lin (July 2005). "Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages". Advanced Packaging: 2–4. Retrieved 2008-03-04.
  14. 1 2 3 http://www.goodfellow.com/E/Aluminium.html
  15. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Thermal conductivities of the elements (data page)
  16. 1 2 3 4 5 6 7 Electrical resistivities of the elements (data page)
  17. 1 2 3 4 http://www.goodfellow.com/E/AluminiumNitride'.html
  18. 1 2 3 4 http://www.goodfellow.com/E/Alumina.html
  19. 1 2 3 Alumina (Al2O3) - Physical, Mechanical, Thermal, Electrical and Chemical Properties - Supplier Data by Ceramaret
  20. 1 2 3 4 5 6 7 8 http://www.engineersedge.com/heat_transfer/thermal-conductivity-gases.htm
  21. 1 2 3 4 http://www.goodfellow.com/E/Beryllia.html
  22. 1 2 3 4 http://www.goodfellow.com/E/Brass.html
  23. 1 2 3 4 5 http://www.goodfellow.com/E/Brass'.html
  24. 1 2 3 4 5 6 http://www.goodfellow.com/E/Bronze.html
  25. 1 2 http://www.engineeringtoolbox.com/calcium-silicate-insulation-k-values-d_1171.html
  26. 1 2 http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=26
  27. 1 2 http://www.engineeringtoolbox.com/carbon-dioxide-d_1000.html
  28. 1 2 3 4 5 6 "Carbon nanotubes : Reinforced metal matrix composites" by A.Agarwal, S.R.Bakshi and D.Lahiri, CRC Press, 2011 (ch.1, p.8, chart 1.1 : physical properties of carbon materials )
  29. 1 2 3 4 5 6 7 8 "Carbon Nanotubes: Thermal Properties" (PDF). Retrieved 2009-06-06.
  30. 1 2 Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L.; et al. (2001-06-01). "Thermal transport measurements of individual multiwalled nanotubes". Physical Review Letters 87 (21): 215502–215506. arXiv:cond-mat/0106578. Bibcode:2001PhRvL..87u5502K. doi:10.1103/PhysRevLett.87.215502. PMID 11736348.
  31. 1 2 Pop, Eric; Mann, David; Wang, Qian; Goodson, Kenneth; Dai, Hongjie; et al. (2005-12-22). "Thermal conductance of an individual single-wall carbon nanotube above room temperature". Nano Letters 6 (1): 96–100. arXiv:cond-mat/0512624. Bibcode:2006NanoL...6...96P. doi:10.1021/nl052145f. PMID 16402794.
  32. 1 2 3 4 Berber, Savas; Kwon, Young-Kyun; Tománek, David (2000-02-23). "Unusually high thermal conductivity of carbon nanotubes". Physical Review Letters 84 (20): 4613–4616. arXiv:cond-mat/0002414. Bibcode:2000PhRvL..84.4613B. doi:10.1103/PhysRevLett.84.4613. PMID 10990753.
  33. 1 2 Li, Qingwen; Li, Yuan; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zheng, L. X.; Doorn, S. K.; et al. (2007). "Structure-Dependent Electrical Properties of Carbon Nanotube Fibers". Advanced Materials 19 (20): 3358–3363. doi:10.1002/adma.200602966.
  34. 1 2 International Standard EN-ISO 10456:2007 'Building materials and products - Hygrothermal properties - Tabulated design values and procedures for determining declared and design thermal values'
  35. 1 2 3 http://www.goodfellow.com/E/Copper.html
  36. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 CRC handbook of chemistry and physics(subscription required)(HTTP cookies required)
  37. 1 2 3 4 5 6 7 8 9 10 11 12 Other references listed within Wikipedia (this table may not be cited, pure elements are sourced from Chemical elements data references, otherwise an in-table linked-page must list the relevant references)
  38. 1 2 3 4 Anthony, T. R.; Banholzer, W. F.; Fleischer, J. F.; Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Pryor, R. W. (1989-12-27). "Thermal conductivity of isotopically enriched 12C diamond". Physical Review B 42 (2): 1104–1111. Bibcode:1990PhRvB..42.1104A. doi:10.1103/PhysRevB.42.1104.
  39. 1 2 3 4 Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Anthony, T. R.; Banholzer, W. F. (1993-02-16). "Thermal conductivity of isotopically modified single crystal diamond". Physical Review Letters 70 (24): 3764–3767. Bibcode:1993PhRvL..70.3764W. doi:10.1103/PhysRevLett.70.3764. PMID 10053956.
  40. "MG 832TC Thermally Conductive Epoxy".
  41. "OMEGABOND OB-100/101/200 Thermally Conductive Epoxies" (PDF).
  42. Timothy W. Tong (8 June 1994). Thermal Conductivity 22. CRC. p. 718. ISBN 978-1-56676-172-7.
  43. 1 2 3 4 http://www.goodfellow.com/E/Polystyrene.html
  44. 1 2 3 4 http://www.goodfellow.com/E/Silica.html
  45. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 [R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, November 25, 1966, pp. 67, 68, and 89. http://www.nist.gov/data/nsrds/NSRDS-NBS-8.pdf Link text]
  46. 1 2 3 4 Serway, Raymond A. (1998). Principles of Physics (2nd ed.). Fort Worth, Texas; London: Saunders College Pub. p. 602. ISBN 0-03-020457-7.
  47. 1 2 Griffiths, David (1999) [1981]. "7. Electrodynamics". In Alison Reeves (ed.). Introduction to Electrodynamics (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. p. 286. ISBN 0-13-805326-X. OCLC 40251748.
  48. T.M.Yarwood & F. Castle, Physical and Mathematical Tables, Glascow: The University Press, 1970 page 38.
  49. 1 2 3 http://www.goodfellow.com/E/Gold.html
  50. 1 2 3 4 5 6 7 8 Marble Institute of America (2 values are usually given: the highest and lowest test scores)
  51. 1 2 3 Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning; et al. (2008-02-20). "Superior Thermal Conductivity of Single-Layer Graphene". Nano Letters ASAP 8 (3): 902–907. Bibcode:2008NanoL...8..902B. doi:10.1021/nl0731872. PMID 18284217.
  52. Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
  53. 1 2 3 Properties of Graphite
  54. Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. pp. 256–268. ISBN 0-442-15598-0.
  55. M. J. Assael, S. Mixafendi, W. A. Wakeham (1 July 1986). "The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density" (PDF). NIST. Retrieved 2 April 2015.
  56. 1 2 http://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html
  57. 1 2 3 http://www.goodfellow.com/E/Iron.html
  58. 1 2 3 http://www.goodfellow.com/E/Lead.html
  59. 1 2 http://encyclopedia.airliquide.com/Encyclopedia.asp?GasID=41
  60. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 http://www.goodfellow.com/Home.aspx?LangType=2057
  61. 1 2 3 4 5 6 7 8 9 [Engineering Research Bulletin No. 40, Rutgers University (1958) quoted by Weast, R.C., Editor-in-Chief, Handbook of Chemistry and Physics, 48th edition, Cleveland: The Chemical Rubber Publishing Co. 1967-1968, page E-5.]
  62. R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 69, 99>Link Text
  63. 1 2 3 http://www.goodfellow.com/E/Quartz-Fused.html
  64. 1 2 3 4 5 6 7 8 9 10 11 12 [Ratcliffe, E.H., National Physical Laboratory, Teddington, Middlesex, England, quoted by Weast, R.C. Editor-in-Chief, Handbook of Chemistry and Physics, 48th edition, 1967-1968, Cleveland: Chemical Rubber Publishing Co., page E6.]
  65. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, page 99>Link Text
  66. 1 2 http://esrla.com/pdf/ricehullhouse.pdf
  67. 1 2 http://edoc.gfz-potsdam.de/gfz/get/15306/0/69070f5918278d63d23cfce5cbad024a/15306.pdf
  68. 1 2 3 http://energy.lbl.gov/ECS/aerogels/sa-thermal.html Thermal Properties - Silica Aerogels
  69. 1 2 3 http://www.goodfellow.com/E/Silver.html
  70. S. Vandana (1 December 2002). "Alternative Energy". APH: 45. ISBN 978-81-7648-349-0{{inconsistent citations}}
  71. 1 2 http://www.almazoptics.com/NaCl.htm
  72. 1 2 Soil Sci Journals
  73. 1 2 "Thermal Conductivity-of Solders".
  74. 1 2 http://www.goodfellow.com/E/Stainless-Steel-AISI-302.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-304.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-310.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-316.html
    http://www.goodfellow.com/E/Stainless-Steel-AISI-321.html
  75. 1 2 3 http://www.goodfellow.com/E/Stainless-Steel-17-7PH.html
  76. 1 2 3 4 http://www.goodfellow.com/E/Stainless-Steel-AISI-410.html
  77. "3M™ Thermally Conductive Adhesive Transfer Tape 8805". 3M. 2015.
  78. 1 2 3 http://www.goodfellow.com/E/Titanium.html
  79. 1 2 3 http://www.goodfellow.com/E/Titanium-Aluminium-Vanadium.html
  80. 1 2 3 4 5 6 "2.7.9 Physical properties of sea water". Kaye and Laby - National Physical Laboratory. Retrieved 2010-01-25. External link in |publisher= (help)
  81. 1 2 "Thermal conductivity of saturated H2O and D2O, CRC Handbook, p. 6–4.
  82. 1 2 3 4 5 6 7 "Physical Properties and Moisture Relations of Wood" (PDF).

External links

This article is issued from Wikipedia - version of the Saturday, February 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.