List of superconductors
The table showing major parameters of major superconductors of simple structure. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in teslas. "BCS" means whether or not the superconductivity is explained within the BCS theory.
Formula | TC (K) | HC (T) | Type | BCS | References |
---|---|---|---|---|---|
Elements | |||||
Al | 1.20 | 0.01 | I | yes | [1][2][3] |
Cd | 0.52 | 0.0028 | I | yes | [2][3] |
Diamond:B | 11.4 | 4 | II | yes | [4][5][6] |
Ga | 1.083 | 0.0058 | I | yes | [7][3][2] |
Hf | 0.165 | I | yes | [2] | |
α-Hg | 4.15 | 0.04 | I | yes | [2][3] |
β-Hg | 3.95 | 0.04 | I | yes | [2][3] |
In | 3.4 | 0.03 | I | yes | [2][3] |
Ir | 0.14 | 0.0016[7] | I | yes | [2] |
α-La | 4.9 | I | yes | [2] | |
β-La | 6.3 | I | yes | [2] | |
Mo | 0.92 | 0.0096 | I | yes | [2][7] |
Nb | 9.26 | 0.82 | II | yes | [2][3] |
Os | 0.65 | 0.007 | I | yes | [2] |
Pa | 1.4 | I | yes | [8] | |
Pb | 7.19 | 0.08 | I | yes | [2][3] |
Re | 2.4 | 0.03 | I | yes | [2][3][9] |
Ru | 0.49 | 0.005 | I | yes | [2][3] |
Si:B | 0.4 | 0.4 | II | yes | [10] |
Sn | 3.72 | 0.03 | I | yes | [2][3] |
Ta | 4.48 | 0.09 | I | yes | [2][3] |
Tc | 7.46–11.2 | 0.04 | II | yes | [2][3] |
α-Th | 1.37 | 0.013 | I | yes | [2][3] |
Ti | 0.39 | 0.01 | I | yes | [2][3] |
Tl | 2.39 | 0.02 | I | yes | [2][3] |
α-U | 0.68 | I | yes | [2][8] | |
β-U | 1.8 | I | yes | [8] | |
V | 5.03 | 1 | II | yes | [2][3] |
α-W | 0.015 | 0.00012 | I | yes | [7][8][11] |
β-W | 1–4 | [11] | |||
Zn | 0.855 | 0.005 | I | yes | [2][3] |
Zr | 0.55 | 0.014 | I | yes | [2][3] |
Compounds | |||||
Ba8Si46 | 8.07 | 0.008 | II | yes | [12] |
C6Ca | 11.5 | 0.95 | II | [13] | |
C6Li3Ca2 | 11.15 | II | [13] | ||
C8K | 0.14 | II | [13] | ||
C8KHg | 1.4 | II | [13] | ||
C6K | 1.5 | II | [14] | ||
C3K | 3.0 | II | [14] | ||
C3Li | <0.35 | II | [14] | ||
C2Li | 1.9 | II | [14] | ||
C3Na | 2.3–3.8 | II | [14] | ||
C2Na | 5.0 | II | [14] | ||
C8Rb | 0.025 | II | [13] | ||
C6Sr | 1.65 | II | [13] | ||
C6Yb | 6.5 | II | [13] | ||
C60Cs2Rb | 33 | II | yes | [15] | |
C60K3 | 19.8 | 0.013 | II | yes | [16][12] |
C60RbX | 28 | II | yes | [17] | |
FeB4 | 2.9 | I | [18] | ||
InN | 3 | II | yes | [19] | |
In2O3 | 3.3 | ~3 | II | yes | [20] |
LaB6 | 0.45 | yes | [21] | ||
MgB2 | 39 | 74 | II | yes | [22] |
Nb3Al | 18 | II | yes | [2] | |
Nb3Ge | 23.2 | 37 | II | yes | [23] |
NbO | 1.38 | II | yes | [24] | |
NbN | 16 | II | yes | [2] | |
Nb3Sn | 18.3 | 30 | II | yes | [25] |
NbTi | 10 | 15 | II | yes | [2] |
SiC:B | 1.4 | 0.008 | I | yes | [26] |
SiC:Al | 1.5 | 0.04 | II | yes | [26] |
TiN | 5.6 | yes | [27] | ||
YB6 | 8.4 | II | yes | [28][29][30] | |
ZrN | 10 | yes | [31] | ||
ZrB12 | 6.0 | I | yes | [30] |
See also
- Conventional superconductor
- covalent superconductors
- High-temperature superconductivity
- Room temperature superconductor
- Superconductivity
- Superconductor classification
- Technological applications of superconductivity
- Timeline of low-temperature technology
- Type-I superconductor
- Type-II superconductor
- Unconventional superconductor
References
- ↑ Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review 111: 132. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics 35: 1. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics 26 (3): 277. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277.
- ↑ Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature 428 (6982): 542–545. doi:10.1038/nature02449. PMID 15057827.
- ↑ Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210.
- ↑ Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027.
- 1 2 3 4 Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7.
- 1 2 3 4 Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860.
- ↑ Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309.
- ↑ Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006). "Superconductivity in doped cubic silicon". Nature 444 (7118): 465. Bibcode:2006Natur.444..465B. doi:10.1038/nature05340. PMID 17122852.
- 1 2 Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Appiled Superconductivity 15 (2): 3528. doi:10.1109/TASC.2005.849033.
- 1 2 Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials 7: S88. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.02.012.
- 1 2 3 4 5 6 7 Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102.
- 1 2 3 4 5 6 Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals 34: 455. doi:10.1016/0379-6779(89)90424-4.
- ↑ Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature 352 (6332): 222. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0.
- ↑ Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science 256 (5060): 1190. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215.
- ↑ Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in RbxC60". Physical Review Letters 66 (21): 2830–2832. doi:10.1103/PhysRevLett.66.2830. PMID 10043627.
- ↑ "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11.
- ↑ Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials 7: S112. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.05.009.
- ↑ Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208.
- ↑ Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589.
- ↑ Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature 410 (6824): 63. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039.
- ↑ Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics 34 (5–6): 569. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941.
- ↑ Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068.
- ↑ Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review 95 (6): 1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435.
- 1 2 Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204.
- ↑ Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5.
- ↑ Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3.
- ↑ Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity. 460-462: 626. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135.
- 1 2 Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B 78 (2): 024522. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522.
- ↑ Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis 15 (6): 377. doi:10.1002/sia.740150606.
External links
- A review of 700 potential superconductors Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.; Kumakura, H.; Nohara, M.; Hiramatsu, H.; Fujitsu, S. (2015). "Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides". Science and Technology of Advanced Materials 16 (3): 033503. doi:10.1088/1468-6996/16/3/033503.
This article is issued from Wikipedia - version of the Saturday, February 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.