List of E6 polytopes
221 |
122 |
In 6-dimensional geometry, there are 39 uniform polytopes with E6 symmetry. The two simplest forms are the 221 and 122 polytopes, composed of 27 and 72 vertices respectively.
They can be visualized as symmetric orthographic projections in Coxeter planes of the E6 Coxeter group, and other subgroups.
Graphs
Symmetric orthographic projections of these 39 polytopes can be made in the E6, D5, D4, D2, A5, A4, A3 Coxeter planes. Ak has k+1 symmetry, Dk has 2(k-1) symmetry, and E6 has 12 symmetry.
Six symmetry planes graphs are shown for 9 of the 39 polytopes in the E6 symmetry. The vertices and edges drawn with vertices colored by the number of overlapping vertices in each projective position.
# | Coxeter plane graphs | Coxeter diagram Names | ||||
---|---|---|---|---|---|---|
E6 [12] |
D5 [8] |
D4 / A2 [6] |
A5 [6] |
D3 / A3 [4] | ||
1 | 221 Icosihepta-heptacontidipeton (jak) | |||||
2 | Rectified 221 Rectified icosihepta-heptacontidipeton (rojak) | |||||
3 | Trirectified 221 Trirectified icosihepta-heptacontidipeton (harjak) | |||||
4 | Truncated 221 Truncated icosihepta-heptacontidipeton (tojak) | |||||
5 | Cantellated 221 Cantellated icosihepta-heptacontidipeton |
# | Coxeter plane graphs | Coxeter diagram Names | |||||
---|---|---|---|---|---|---|---|
E6 [12] |
D5 [8] |
D4 / A2 [6] |
A5 [6] |
D6 / A4 [10] |
D3 / A3 [4] | ||
6 | Rectified 122 / Birectified 221 Rectified pentacontatetrapeton (ram) | ||||||
7 | 122 Pentacontatetrapeton (mo) | ||||||
8 | Bicantellated 221 / Birectified 122 Birectified pentacontatetrapeton (barm) | ||||||
9 | Truncated 122 Truncated pentacontatetrapeton (tim) |
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Richard Klitzing, 6D, uniform polytopes (polypeta)
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |
This article is issued from Wikipedia - version of the Tuesday, February 17, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.