List of D5 polytopes

Orthographic projections in the D5 Coxeter plane

5-demicube

5-orthoplex

In 5-dimensional geometry, there are 23 uniform polytopes with D5 symmetry, 8 are unique, and 15 are shared with the B5 symmetry. There are two special forms, the 5-orthoplex, and 5-demicube with 10 and 16 vertices respectively.

They can be visualized as symmetric orthographic projections in Coxeter planes of the D6 Coxeter group, and other subgroups.

Graphs

Symmetric orthographic projections of these 8 polytopes can be made in the D5, D4, D3, A3, Coxeter planes. Ak has [k+1] symmetry, Dk has [2(k-1)] symmetry. The B5 plane is included, with only half the [10] symmetry displayed.

These 8 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

# Coxeter plane projections Coxeter diagram
=
Schläfli symbol
Johnson and Bowers names
[10/2] [8] [6] [4] [4]
B5 D5 D4 D3 A3
1 =
h{4,3,3,3}
5-demicube
Hemipenteract (hin)
2 =
h2{4,3,3,3}
Cantic 5-cube
Truncated hemipenteract (thin)
3 =
h3{4,3,3,3}
Runcic 5-cube
Small rhombated hemipenteract (sirhin)
4 =
h4{4,3,3,3}
Steric 5-cube
Small prismated hemipenteract (siphin)
5 =
h2,3{4,3,3,3}
Runcicantic 5-cube
Great rhombated hemipenteract (girhin)
6 =
h2,4{4,3,3,3}
Stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
7 =
h3,4{4,3,3,3}
Steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
8 =
h2,3,4{4,3,3,3}
Steriruncicantic 5-cube
Great prismated hemipenteract (giphin)

References

Notes

This article is issued from Wikipedia - version of the Wednesday, December 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.