Le Cam's theorem

In probability theory, Le Cam's theorem, named after Lucien le Cam (1924 2000), states the following. [1][2][3]

Suppose:

Then

\sum_{k=0}^\infty \left| \Pr(S_n=k) - {\lambda_n^k e^{-\lambda_n} \over k!} \right| < 2 \sum_{i=1}^n p_i^2.

In other words, the sum has approximately a Poisson distribution and the above inequality bounds the approximation error in terms of the total variation distance.

By setting pi = λn/n, we see that this generalizes the usual Poisson limit theorem.

When \lambda_n is a large a better bound is possible: :\sum_{k=0}^\infty \left| \Pr(S_n=k) - {\lambda_n^k e^{-\lambda_n} \over k!} \right| < 2 (1 \wedge \frac 1 \lambda_n) \sum_{i=1}^n p_i^2. It is also possible to weaken the independence requirement.[4]

References

  1. Le Cam, L. (1960). "An Approximation Theorem for the Poisson Binomial Distribution". Pacific Journal of Mathematics 10 (4): 11811197. doi:10.2140/pjm.1960.10.1181. MR 0142174. Zbl 0118.33601. Retrieved 2009-05-13.
  2. Le Cam, L. (1963). "On the Distribution of Sums of Independent Random Variables". In Jerzy Neyman; Lucien le Cam. Bernoulli, Bayes, Laplace: Proceedings of an International Research Seminar. New York: Springer-Verlag. pp. 179202. MR 0199871.
  3. Steele, J. M. (1994). "Le Cam's Inequality and Poisson Approximations". The American Mathematical Monthly 101 (1): 48–54. doi:10.2307/2325124. JSTOR 2325124.
  4. den Hollander, Frank. Probability Theory: the Coupling Method.

External links

This article is issued from Wikipedia - version of the Tuesday, February 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.