Language acquisition

"Language learning" redirects here. For the processing of language by the human brain, see Learning languages. For the journal, see Language Learning (journal). For formal instruction in language, see Language education.

Language acquisition is the process by which humans acquire the capacity to perceive and comprehend language, as well as to produce and use words and sentences to communicate. Language acquisition is one of the quintessential human traits,[1] because non-humans do not communicate by using language.[2] Language acquisition usually refers to first-language acquisition, which studies infants' acquisition of their native language. This is distinguished from second-language acquisition, which deals with the acquisition (in both children and adults) of additional languages.

The capacity to successfully use language requires one to acquire a range of tools including phonology, morphology, syntax, semantics, and an extensive vocabulary. Language can be vocalized as in speech, or manual as in sign. The human language capacity is represented in the brain. Even though the human language capacity is finite, one can say and understand an infinite number of sentences, which is based on a syntactic principle called recursion. Evidence suggests that every individual has three recursive mechanisms that allow sentences to go indeterminately. These three mechanisms are: relativization, complementation and coordination.[3] Furthermore, there are actually two main guiding principles in first-language acquisition, that is, speech perception always precedes speech production and the gradually evolving system by which a child learns a language is built up one step at a time, beginning with the distinction between individual phonemes.[4]

History

Learning box for language acquisition

Philosophers in ancient societies were interested in how humans acquired the ability to understand and produce language well before empirical methods for testing those theories were developed, but for the most part they seemed to regard language acquisition as a subset of man's ability to acquire knowledge and learn concepts.[5] Some early observation-based ideas about language acquisition were proposed by Plato, who felt that word-meaning mapping in some form was innate. Additionally, Sanskrit grammarians debated for over twelve centuries whether humans' ability to recognize the meaning of words was god-given (possibly innate) or passed down by previous generations and learned from already established conventions—e.g. a child learning the word for cow by listening to trusted speakers talking about cows.[6]

In a more modern context, empiricists, like Hobbes and Locke, argued that knowledge (and, for Locke, language) emerge ultimately from abstracted sense impressions. These arguments lean towards the "nurture" side of the argument – that language is acquired through sensory experience. This led to Carnap's Aufbau, an attempt to learn all knowledge from sense datum, using the notion of "remembered as similar" to bind these into clusters, which would eventually map into language.[7]

Proponents of behaviorism argued that language may be learned through a form of operant conditioning. In B. F. Skinner's Verbal Behaviour (1957), he suggested that the successful use of a sign, such as a word or lexical unit, given a certain stimulus, reinforces its "momentary" or contextual probability. Since operant conditioning is contingent on reinforcement by rewards, a child would learn that a specific combination of sounds stands for a specific thing through repeated successful associations made between the two. A "successful" use of a sign would be one in which the child is understood (for example, a child saying "up" when he or she wants to be picked up) and rewarded with the desired response from another person, thereby reinforcing the child's understanding of the meaning of that word and making it more likely that he or she will use that word in a similar situation in the future. Some empiricist theories of language acquisition include the statistical learning theory. Charles F. Hockett of language acquisition, relational frame theory, functionalist linguistics, social interactionist theory, and usage-based language acquisition.

Skinner's behaviourist idea was strongly attacked by Noam Chomsky in a review article in 1959, calling it "largely mythology" and a "serious delusion".[8] Arguments against Skinner's idea of language acquisition through operant conditioning include the fact that children often ignore language corrections from adults. Instead, children typically follow a pattern of using an irregular form of a word correctly, making errors later on, and eventually returning to the proper use of the word. For example, a child may correctly learn the word "gave" (past tense of "give"), and later on use the word "gived". Eventually, the child will typically go back to learning the correct word, "gave". This pattern is difficult to attribute to Skinner's idea of operant conditioning as the primary way that children acquire language. Chomsky argued that if language were solely acquired through behavioral conditioning, children would not likely learn the proper use of a word and suddenly use the word incorrectly.[9] Chomsky believed Skinner failed to account for the central role of syntactic knowledge in language competence. Chomsky also rejected the term "learning," which Skinner used to claim that children "learn" language through operant conditioning.[10] Instead, Chomsky argued for a mathematical approach to language acquisition, based on a study of syntax.

General approaches

A lesson at Kituwah Academy on the Qualla Boundary in North Carolina. The language immersion school, operated by the Eastern Band of Cherokee Indians, teaches the same curriculum as other American primary schools, but the Cherokee language is the medium of instruction from pre-school on up and students learn it as a first language. Such schools have proven instrumental in the preservation and perpetuation of the Cherokee language.

A major debate in understanding language acquisition is how these capacities are picked up by infants from the linguistic input.[11] Input in the linguistic context is defined as "All words, contexts, and other forms of language to which a learner is exposed, relative to acquired proficiency in first or second languages". Nativists such as Noam Chomsky have focused on the hugely complex nature of human grammars, the finiteness and ambiguity of the input that children receive, and the relatively limited cognitive abilities of an infant. From these characteristics, they conclude that the process of language acquisition in infants must be tightly constrained and guided by the biologically given characteristics of the human brain. Otherwise, they argue, it is extremely difficult to explain how children, within the first five years of life, routinely master the complex, largely tacit grammatical rules of their native language.[12]

Other scholars, however, have resisted the possibility that infants' routine success at acquiring the grammar of their native language requires anything more than the forms of learning seen with other cognitive skills, including such mundane motor skills as learning to ride a bike. In particular, there has been resistance to the possibility that human biology includes any form of specialization for language. This conflict is often referred to as the "nature and nurture" debate. Of course, most scholars acknowledge that certain aspects of language acquisition must result from the specific ways in which the human brain is "wired" (a "nature" component, which accounts for the failure of non-human species to acquire human languages) and that certain others are shaped by the particular language environment in which a person is raised (a "nurture" component, which accounts for the fact that humans raised in different societies acquire different languages). The as-yet unresolved question is the extent to which the specific cognitive capacities in the "nature" component are also used outside of language.

Social interactionism

Social interactionist theory is an explanation of language development emphasizing the role of social interaction between the developing child and linguistically knowledgeable adults. It is based largely on the socio-cultural theories of Soviet psychologist Lev Vygotsky, and made prominent in the Western world by Jerome Bruner.[13]

Unlike other approaches, it emphasizes the role of feedback and reinforcement in language acquisition. Specifically, it asserts that much of a child's linguistic growth stems from modeling of and interaction with parents and other adults, who very frequently provide instructive correction.[14] It is thus somewhat similar to behaviorist accounts of language, though it differs substantially in that it posits the existence of a social-cognitive model and other mental structures within children (a sharp contrast to the "black box" approach of classical behaviorism).

Another key idea within the theory of social interactionism is that of the zone of proximal development. Briefly, this is a theoretical construct denoting the set of tasks a child is capable of performing with guidance, but not alone.[15] As applied to language, it describes the set of linguistic tasks (proper syntax, suitable vocabulary usage, etc.) a child cannot carry out on their own at a given time, but can learn to carry out if assisted by an able adult.

Relational frame theory

The relational frame theory (RFT) (Hayes, Barnes-Holmes, Roche, 2001), provides a wholly selectionist/learning account of the origin and development of language competence and complexity. Based upon the principles of Skinnerian behaviorism, RFT posits that children acquire language purely through interacting with the environment. RFT theorists introduced the concept of functional contextualism in language learning, which emphasizes the importance of predicting and influencing psychological events, such as thoughts, feelings, and behaviors, by focusing on manipulable variables in their context. RFT distinguishes itself from Skinner's work by identifying and defining a particular type of operant conditioning known as derived relational responding, a learning process that, to date, appears to occur only in humans possessing a capacity for language. Empirical studies supporting the predictions of RFT suggest that children learn language via a system of inherent reinforcements, challenging the view that language acquisition is based upon innate, language-specific cognitive capacities.[16]

Emergentism

Emergentist theories, such as MacWhinney's competition model, posit that language acquisition is a cognitive process that emerges from the interaction of biological pressures and the environment. According to these theories, neither nature nor nurture alone is sufficient to trigger language learning; both of these influences must work together in order to allow children to acquire a language. The proponents of these theories argue that general cognitive processes subserve language acquisition and that the end result of these processes is language-specific phenomena, such as word learning and grammar acquisition. The findings of many empirical studies support the predictions of these theories, suggesting that language acquisition is a more complex process than many believe.[17]

Syntax and morphology

As syntax began to be studied more closely in the early 20th century, in relation to language learning, it became apparent to linguists, psychologists, and philosophers that knowing a language was not merely a matter of associating words with concepts, but that a critical aspect of language involves knowledge of how to put words together—sentences are usually needed in order to communicate successfully, not just isolated words.[5] A child will use short expressions such as Bye-bye Mummy or All-gone milk, which actually are combinations of individual nouns and an operator,[18] before it begins to use gradually more complex sentences. When acquiring a language, it is also often found that the most frequently used verbs, such as those in the English language, are irregular verbs. These verbs do not follow the most regular pattern in order to form the past tense. Young children first begin to learn the past tense of verbs individually; however, when they acquire a "rule", such as adding -ed to form the past tense, they begin to exhibit occasional overgeneralization errors (e.g. "runned", "hitted") alongside correct past-tense forms. One influential proposal is that overregularization errors occur when the child does not succeed in retrieving an irregular past-tense form quickly enough from long-term memory: In both children and adults, when the speaker does not recall an irregular form, the regular rule applies.[19] [20]

Generativism

Generative grammar, associated especially with the work of Noam Chomsky, is currently one of the approaches to children's acquisition of syntax.[21] The leading idea is that human biology imposes narrow constraints on the child's "hypothesis space" during language acquisition. In the Principles and Parameters Framework, which has dominated generative syntax since Chomsky's (1980) Lectures on Government and Binding: The Pisa Lectures, the acquisition of syntax resembles ordering from a menu: the human brain comes equipped with a limited set of choices, from which the child selects the correct options using her parents' speech, in combination with the context.[22]

An important argument, which favors the generative approach, is the Poverty of the stimulus argument. The child's input (a finite number of sentences encountered by the child, together with information about the context in which they were uttered) is, in principle, compatible with an infinite number of conceivable grammars. Moreover, few, if any, children can rely on corrective feedback from adults when they make a grammatical error.[23] Yet, barring situations of medical abnormality or extreme privation, all the children in a given speech-community converge on very much the same grammar by the age of about five years. An especially dramatic example is provided by children who, for medical reasons, are unable to produce speech, and, therefore, can never be corrected for a grammatical error, yet, nonetheless, converge on the same grammar as their typically developing peers, according to comprehension-based tests of grammar.[24][25]

Considerations such as these have led Chomsky, Jerry Fodor, Eric Lenneberg and others to argue that the types of grammar the child needs to consider must be narrowly constrained by human biology (the nativist position).[26] These innate constraints are sometimes referred to as universal grammar, the human "language faculty", or the "language instinct".[27]

Empiricism

Although Chomsky's theory of a generative grammar has been enormously influential in the field of linguistics since the 1950s, many criticisms of the basic assumptions of generative theory have been put forth by cognitive-functional linguistics, who argue that language structure is created through language use.[28] These linguists argue that the concept of a Language Acquisition Device (LAD) is unsupported by evolutionary anthropology, which tends to show a gradual adaptation of the human brain and vocal cords to the use of language, rather than a sudden appearance of a complete set of binary parameters delineating the whole spectrum of possible grammars ever to have existed and ever to exist.[29] On the other hand, cognitive-functional theorists use this anthropological data to show how human beings have evolved the capacity for grammar and syntax to meet our demand for linguistic symbols. (Binary parameters are common to digital computers, but may not be applicable to neurological systems such as the human brain.)

Further, the generative theory has several hypothetical constructs (such as movement, empty categories, complex underlying structures, and strict binary branching) that cannot possibly be acquired from any amount of linguistic input. It is unclear that human language is actually anything like the generative conception of it. Since language, as imagined by nativists, is unlearnably complex, subscribers to this theory argue that it must, therefore, be innate. A different theory of language, however, may yield different conclusions. While all theories of language acquisition posit some degree of innateness, a less convoluted theory might involve less innate structure and more learning. Under such a theory of grammar, the input, combined with both general and language-specific learning capacities, might be sufficient for acquisition.

Since 1980, linguists studying children, such as Melissa Bowerman,[30] and psychologists following Jean Piaget, like Elizabeth Bates[31] and Jean Mandler, came to suspect that there may indeed be many learning processes involved in the acquisition process, and that ignoring the role of learning may have been a mistake.

In recent years, the debate surrounding the nativist position has centered on whether the inborn capabilities are language-specific or domain-general, such as those that enable the infant to visually make sense of the world in terms of objects and actions. The anti-nativist view has many strands, but a frequent theme is that language emerges from usage in social contexts, using learning mechanisms that are a part of a general cognitive learning apparatus (which is what is innate). This position has been championed by David M. W. Powers,[32] Elizabeth Bates,[33] Catherine Snow, Anat Ninio, Brian MacWhinney, Michael Tomasello,[34] Michael Ramscar,[35] William O'Grady,[36] and others. Philosophers, such as Fiona Cowie[37] and Barbara Scholz with Geoffrey Pullum[38] have also argued against certain nativist claims in support of empiricism.

The new field of Cognitive Linguistics has emerged as a specific counter to Chomskian Generative Grammar and Nativism.

Statistical learning

Some language acquisition researchers, such as Elissa Newport, Richard Aslin, and Jenny Saffran, emphasize the possible roles of general learning mechanisms, especially statistical learning, in language acquisition. The development of connectionist models that are able to successfully learn words and syntactical conventions[39] supports the predictions of statistical learning theories of language acquisition, as do empirical studies of children's detection of word boundaries.[40]

Statistical learning theory suggests that, when learning language, a learner would use the natural statistical properties of language to deduce its structure, including sound patterns, words, and the beginnings of grammar.[41] That is, language learners are sensitive to how often syllable combinations or words occur in relation to other syllables.[42][43][44] Infants between 21 months and 23 months old are also able to use statistical learning to develop "lexical categories," such as an animal category, which infants might later map to newly learned words in the same category. These findings suggest that early experience listening to language is critical to vocabulary acquisition.[45]

The statistical abilities are effective, but also limited by what qualifies as input, what is done with that input, and by the structure of the resulting output.[41] One should also note that statistical learning (and more broadly, distributional learning) can be accepted as a component of language acquisition by researchers on either side of the "nature and nurture" debate. From the perspective of that debate, an important question is whether statistical learning can, by itself, serve as an alternative to nativist explanations for the grammatical constraints of human language.

Chunking

Chunking theories of language acquisition constitute a group of theories related to statistical learning theories, in that they assume the input from the environment plays an essential role; however, they postulate different learning mechanisms. The central idea of these theories is that language development occurs through the incremental acquisition of meaningful chunks of elementary constituents, which can be words, phonemes, or syllables. Recently, this approach has been highly successful in simulating several phenomena in the acquisition of syntactic categories[46] and the acquisition of phonological knowledge.[47] The approach has several features that make it unique: the models are implemented as computer programs, which enables clear-cut and quantitative predictions to be made; they learn from naturalistic input, made of actual child-directed utterances; they produce actual utterances, which can be compared with children's utterances; and they have simulated phenomena in several languages, including English, Spanish, and German.

Researchers at the Max Planck Institute for Evolutionary Anthropology have developed a computer model analyzing early toddler conversations to predict the structure of later conversations. They showed that toddlers develop their own individual rules for speaking with slots, into which they could put certain kinds of words. A significant outcome of the research was that rules inferred from toddler speech were better predictors of subsequent speech than traditional grammars.[48]

Representation of language acquisition in the brain

Recent advances in functional neuroimaging technology have allowed for a better understanding of how language acquisition is manifested physically in the brain. Language acquisition almost always occurs in children during a period of rapid increase in brain volume. At this point in development, a child has many more neural connections than he or she will have as an adult, allowing for the child to be more able to learn new things than he or she would be as an adult.

Sensitive period

Language acquisition has been studied from the perspective of developmental psychology and neuroscience,[49] which looks at learning to use and understand language parallel to a child's brain development. It has been determined, through empirical research on developmentally normal children, as well as through some extreme cases of language deprivation, that there is a "sensitive period" of language acquisition in which human infants have the ability to learn any language. Several findings have observed that from birth until the age of six months, infants can discriminate the phonetic contrasts of all languages. Researchers believe that this gives infants the ability to acquire the language spoken around them. After this age the child is only able to perceive the phonemes specific to the language he or she is learning. This reduced phonemic sensitivity enables children to build phonemic categories and recognize stress patterns and sound combinations specific to the language they are acquiring.[50] As Wilder Penfield noted, "Before the child begins to speak and to perceive, the uncommitted cortex is a blank slate on which nothing has been written. In the ensuing years much is written, and the writing is normally never erased. After the age of ten or twelve, the general functional connexions have been established and fixed for the speech cortex." According to the sensitive or critical period models, the age at which a child acquires the ability to use language is a predictor of how well he or she is ultimately able to use language.[51] However, there may be an age at which becoming a fluent and natural user of a language is no longer possible. Our brains may be automatically wired to learn languages, but this ability does not last into adulthood in the same way that it exists during development. By the onset of puberty (around age 12), language acquisition has typically been solidified and it becomes more difficult to learn a language in the same way a native speaker would. At this point, it is usually a second language that a person is trying to acquire and not a first.[12]

This critical period is almost never missed by cognitively normal children—humans are so well prepared to learn language that it becomes almost impossible not to. Researchers are unable to experimentally test the effects of the sensitive period of development on language acquisition, because it would be unethical to deprive children of language until this period is over. However, case studies on abused, language deprived children show that they were extremely limited in their language skills, even after instruction.[52]

At a very young age, children can already distinguish between different sounds but cannot produce them yet. However, during infancy, children do begin to babble. Deaf babies babble in the same order when hearing sounds as non-deaf babies do, thus showing that babbling is not caused by babies simply imitating certain sounds, but is actually a natural part of the process of language development. However, deaf babies do often babble less than non-deaf babies and they begin to babble later on in infancy (begin babbling at 11 months as compared to 6 months) when compared to non-deaf babies.[53]

Studies published in 2013 have pushed serious language acquisition back into the fetus' intrauterine life.

A fetus begins to hear between 24 and 27 weeks. It has [as of 2015] been known for a decade that fetuses learn general features of their native language, such as rhythm and intonation, but two studies in 2013 confirmed that they also pick up distinct words and syllables. Brain activity of newborns in one of those studies revealed that they recognized three-syllable nonsense words that had been repeatedly played in their environment prior to birth, whereas newborns never exposed to the words were indifferent.[54][55]

Vocabulary acquisition

The capacity to acquire the ability to incorporate the pronunciation of new words depends upon many factors. Before anything the learner needs to be able to hear what they are attempting to pronounce. Another is the capacity to engage in speech repetition.[56][57][58][59] Children with reduced abilities to repeat nonwords (a marker of speech repetition abilities) show a slower rate of vocabulary expansion than children for whom this is easy.[60] It has been proposed that the elementary units of speech have been selected to enhance the ease with which sound and visual input can be mapped into motor vocalization.[61] Several computational models of vocabulary acquisition have been proposed so far.[62][63][64][65][66][67][68] Various studies have shown that the size of a child's vocabulary by the age of 24 months correlates with the child's future development and language skills. A lack of language richness by this age has detrimental and long-term effects on the child's cognitive development, which is why it is so important for parents to engage their infants in language. If a child knows fifty words or less by the age of 24 months, he or she is classified as a late-talker and future language development, like vocabulary expansion and the organization of grammar, is likely to be slower and stunted.

Two more crucial elements of vocabulary acquisition are word segmentation and statistical learning (described above). Word segmentation, or the segmentation of words and syllables from fluent speech can be accomplished by eight-month-old infants.[42] By the time infants are 17-months-old, they are able to link meaning to segmented words.[43]

Meaning

Children learn, on average, ten to fifteen new word meanings each day, but only one of these words can be accounted for by direct instruction.[69] The other nine to fourteen word meanings need to be picked up in some other way. It has been proposed that children acquire these meanings with the use of processes modeled by latent semantic analysis; that is, when they meet an unfamiliar word, children can use information in its context to correctly guess its rough area of meaning.[69] A child may expand the meaning and use of certain words that are already part of its mental lexicon in order to denominate anything that is somehow related but for which it does not know the specific words yet. For instance, a child may broaden the use of mummy and dada in order to indicate anything that belongs to its mother or father, or perhaps every person who resembles its own parents, or say rain while meaning I don't want to go out.[70]

There is also reason to believe that children use various heuristics to properly infer the meaning of words. Markman and others have proposed that children assume words to refer to objects with similar properties (e.g., "cow" and "pig" might both be "animals") rather than to objects that are thematically related (e.g., "cow" and "milk" are probably not both "animals").[71] Children also seem to adhere to the "whole object assumption" — thinking that a novel label refers to an entire entity rather than one of its parts.[71]

Neurocognitive research

According to several linguists, neurocognitive research has confirmed many standards of language learning, such as: "learning engages the entire person (cognitive, affective, and psychomotor domains), the human brain seeks patterns in its searching for meaning, emotions affect all aspects of learning, retention and recall, past experience always affects new learning, the brain's working memory has a limited capacity, lecture usually results in the lowest degree of retention, rehearsal is essential for retention, practice [alone] does not make perfect, and each brain is unique" (Sousa, 2006, p. 274). In terms of genetics, the gene ROBO1 has been associated with phonological buffer integrity or length.[72]

Although it is difficult to determine without invasive measures which exact parts of the brain become most active and important for language acquisition, fMRI and PET technology has allowed for some conclusions to be made about where language may be centered. Kuniyoshi Sakai proposed, based on several neuroimaging studies, that there may be a "grammar center", where language is primarily processed in the left lateral premotor cortex (located near the pre central sulcus and the inferior frontal sulcus). Additionally, these studies proposed that first language and second-language acquisition may be represented differently in the cortex.[12]

During early infancy, language processing seems to occur over many areas in the brain. However, over time, it gradually becomes concentrated into two areas – Broca's area and Wernicke's area. Broca's area is in the left frontal cortex and is primarily involved in the production of the patterns in vocal and sign language. Wernicke's area is in the left temporal cortex and is primarily involved in language comprehension. The specialization of these language centers is so extensive that damage to them results in a critical condition known as aphasia.[73]

Language acquisition as a typically human phenomenon

The capacity to acquire and use language is a key aspect that distinguishes humans from other beings. Although it is difficult to pin down what aspects of language are uniquely human, there are a few design features that can be found in all known forms of human language, but that are missing from forms of animal communication. For example, many animals are able to communicate with each other by signaling to the things around them, but this kind of communication lacks the arbitrariness of human vernaculars (in that there is nothing about the sound of the word "dog" that would hint at its meaning). Other forms of animal communication may utilize arbitrary sounds, but are unable to combine those sounds in different ways to create completely novel messages that can then be automatically understood by another. Hockett called this design feature of human language "productivity". It is crucial to the understanding of human language acquisition that we are not limited to a finite set of words, but, rather, must be able to understand and utilize a complex system that allows for an infinite number of possible messages. So, while many forms of animal communication exist, they differ from human languages in that they have a limited range of vocabulary tokens, and the vocabulary items are not combined syntactically to create phrases.[34]

Language acquisition and prelingual deafness

Main article: prelingual deafness

Prelingual deafness is defined as hearing loss that occurred at birth or before an individual has learned to speak. In the United States, three out of every 1000 children are born deaf or hard of hearing. Treatment options include using hearing aids to strengthen remaining sensory cells or cochlear implants to stimulate the hearing nerve directly.[74] Despite these developments, most prelingually deaf children are unlikely to develop good speech and speech reception skills. However, deaf children of deaf parents tend to do better with language, even though they are isolated from sound and speech. Humans are biologically equipped for language, which is not limited to spoken language only. Even though it might be presumed that deaf children acquire language in different ways since they are not receiving the same input as hearing children, many research findings indicate that deaf children acquire language in the same way that hearing children do.[75] Babies who learn sign language produce signs or gestures that are more regular and more frequent than hearing babies acquiring spoken language.[76] Just as hearing babies babble, deaf babies acquiring sign language will babble with their hands.[76] Therefore, the acquisition of sign language seems to have the same developmental track that is seen in hearing children acquiring spoken language.

Due to recent advances in technology, cochlear implants allow some deaf people to interact with others more efficiently. There are interior and exposed components that require a medical procedure. Especially those who receive cochlear implants earlier in life show improvements.[77] Spoken language development varies widely for those with cochlear implants due to a number of different factors including: age at implantation, frequency, quality and type of speech training.[77] Some evidence suggests that speech processing occurs at a more rapid pace in some pre-lingually deaf children with cochlear implants than those with traditional hearing aids.[77]

See also

References

  1. Friederici, AD. (Oct 2011). "The brain basis of language processing: from structure to function". Physiol Rev 91 (4): 1357–92. doi:10.1152/physrev.00006.2011. PMID 22013214.
  2. Kosslyn, Stephen M.; Osherson, Daniel N. (1995). An invitation to cognitive science. Cambridge, Mass.: MIT Press. ISBN 978-0-262-65045-8. OCLC 613819557.
  3. Lightfoot, David (2010). "Language acquisition and language change". Wiley Interdisciplinary Reviews: Cognitive Science 1 (5): 677–684. doi:10.1002/wcs.39. ISSN 1939-5078.
  4. Fry, Dennis (1977). Homo loquens, Man as a talking animal. Cambridge University Press. pp. 107–108. ISBN 0-521-29239-5.
  5. 1 2 "Innateness and Language". Stanford Encyclopedia of Philosophy.
  6. Matilal, Bimal Krishna (1990). The word and the world: India's contribution to the study of language. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-562515-3. OCLC 24041690.
  7. Kendra A. Palmer (2009). "Understanding Human Language: An In-Depth Exploration of the Human Facility for Language". StudentPulse.com. Retrieved 22 August 2012.
  8. Noam, Chomsky; Skinner, B. F. (1959). "A Review of B. F. Skinner's Verbal Behavior". Language 35: 26–58. doi:10.2307/411334. JSTOR 411334.
  9. Harley, Trevor A. (2010). Talking the Talk: Language, Psychology and Science. New York, NY: Psychology Press. pp. 68–71. ISBN 978-1-84169-339-2.
  10. Harris, Margaret (1992). Language Experience and Early Language Development: From Input to Uptake. UK: Psychology Press. ISBN 0863772382.
  11. Kennison, Shelia M. (2013-07-30). Introduction to language development. Los Angeles: SAGE Publications. ISBN 978-1-4129-9606-8. OCLC 830837502.
  12. 1 2 3 Sakai, Kuniyoshi L. (2005). "Language Acquisition and Brain Development". Science 310 (5749): 815–819. doi:10.1126/science.1113530. PMID 16272114.
  13. Bruner, J. (1983). Child's Talk: Learning to Use Language. Oxford: Oxford University Press.
  14. Moerk, E.L. (1994). "Corrections in first language acquisition: Theoretical controversies and factual evidence". International Journal of Psycholinguistics 10: 33–58.
  15. Vygotskii [Vygotsky], L.S. 1935. "Dinamika umstvennogo razvitiia shkol’nika v sviazi s obucheniem." In Umstvennoe razvitie detei v protsesse obucheniia, pp. 33–52. Moscow-Leningrad: Gosuchpedgiz.
  16. Steven C. Hayes, Dermot Barnes-Holmes, Brian Roche, ed. (2001). Relational Frame Theory: A Post-Skinnerian Account of Human Language and Cognition (Hardcover). Plenum Press. ISBN 0-306-46600-7. OCLC 51896575.
  17. Brian MacWhinney, ed. (1999). The Emergence of Language. Lawrence Erlbaum Associates. ISBN 0-8058-3010-3. OCLC 44958022.
  18. Fry, Dennis (1977). Homo loquens, Man as a talking animal. Cambridge University Press. p. 117. ISBN 0-521-29239-5.
  19. Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J. & Xu, F. (1992). "Overregularization in language acquisition". Monographs of the Society for Research in Child Development. 57(4) (Serial No. 228).
  20. Carlson, Neil and Heth, Donald (2007). Psychology the Science of Behaviour. Pearson Education:New Jersey.
  21. Lillo-Martin, Diane C.; Crain, Stephen (1999). An introduction to linguistic theory and language acquisition. Cambridge, MA: Blackwell Publishers. ISBN 0-631-19536-X. OCLC 799714148.
  22. Baker, Mark Raphael (2002). The atoms of language. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-860632-X. OCLC 66740160.
  23. Brown, Roger and Camile Hanlon. 1970. Derivational complexity and order of acquisition in child speech. In Cognition and the development of language, ed. J. R. Hayes. New York: Wiley
  24. Lenneberg, Eric. 1967. Biological Foundations of Language. New York: Wiley.
  25. Stromswold, Karin. 2009—Lessons from a mute child. Paper presented at 'Rich Languages from Poor Inputs: A Workshop in Honor of Carol Chomsky'. MIT, Cambridge, MA, 11 December 2009.
  26. Chomsky, N. (1975). Reflections on Language. New York: Pantheon Books.
  27. Pinker, Steven (2007). The Language Instinct: How the Mind Creates Language (P.S.). Harper Perennial Modern Classics. ISBN 0-06-133646-7. OCLC 778413074.
  28. Tomasello, Michael (2003). Constructing a language: a usage-based theory of language acquisition. Cambridge: Harvard University Press. ISBN 0-674-01030-2. OCLC 62782600.
  29. Mameli, M.; Bateson, P. (Feb 2011). "An evaluation of the concept of innateness.". Philos Trans R Soc Lond B Biol Sci 366 (1563): 436–43. doi:10.1098/rstb.2010.0174. PMC 3013469. PMID 21199847.
  30. Majid, Asifa; Bowerman, Melissa; Staden, Miriam van; Boster, James S (2007). "The semantic categories of cutting and breaking events: A crosslinguistic perspective" (PDF). Cognitive Linguistics 18 (2). doi:10.1515/COG.2007.005. ISSN 0936-5907.
  31. Bates, E.; D'Amico, S.; Jacobsen, T.; Székely, A.; Andonova, E.; Devescovi, A.; Herron, D.; Lu, CC.; et al. (Jun 2003). "Timed picture naming in seven languages" (PDF). Psychon Bull Rev 10 (2): 344–80. PMC 3392189. PMID 12921412.
  32. Powers, David M. W.; Turk, Christopher. (1989). Machine learning of natural language. London ; New York: Springer-Verlag. ISBN 978-0-387-19557-5. OCLC 20263032.
  33. Bates, E ; Elman, J ; Johnson, M ; Karmiloff-Smith, A ; Parisi, D ; Plunkett, K ; (1999). "Innateness and emergentism". In Graham, George; Bechtel, William. A companion to cognitive science. Oxford: Blackwell. pp. 590–601. ISBN 0-631-21851-3. OCLC 47008353.
  34. 1 2 Tomasello, Michael (2008). Origins of human communication. Cambridge, Mass: MIT Press. ISBN 0-262-20177-1. OCLC 439979810.
  35. Ramscar, Michael; Gitcho, Nicole (2007). "Developmental change and the nature of learning in childhood". Trends in Cognitive Science 11 (7): 274–9. doi:10.1016/j.tics.2007.05.007. PMID 17560161.
  36. "Innateness, Universal Grammar, and Emergentism (2008)" (PDF).
  37. Cowie, F. (1999) What's Within? Nativism Reconsidered (Oxford University Press, New York).
  38. Barbara Scholz and Geoffrey Pullum (2006). Robert J. Stainton, ed. "Irrational Nativist Exuberance" (PDF). Contemporary Debates in Cognitive Science (Oxford / Basil Blackwell): 59–80.
  39. Seidenberg, Mark S.; J.L. McClelland (1989). "A distributed developmental model of word recognition and naming". Psychological Review 96 (4): 523–568. doi:10.1037/0033-295X.96.4.523. PMID 2798649.
  40. Saffran, Jenny; R.N.Aslin, E.L. Newport (1996). "Statistical learning by 8-month-old infants". Science 274 (5294): 1926–1928. doi:10.1126/science.274.5294.1926. PMID 8943209. Retrieved 23 December 2008.
  41. 1 2 Saffran, Jenny R. (2003). "Statistical language learning: mechanisms and constraints". Current Directions in Psychological Science 12 (4): 110–114. doi:10.1111/1467-8721.01243. ISSN 0963-7214.
  42. 1 2 Saffran, Jenny; Aslin, Newport (1996). "Statistical learning by 8-month-old infants". Science 274 (5294): 1926–1928. doi:10.1126/science.274.5294.1926. PMID 8943209.
  43. 1 2 Graf Estes, Katharine; Evans, Alibali, Saffran (March 2007). "Can Infants Map Meaning to Newly Segmented Words? Statistical segmentation and word learning". Psychological Science 18 (3): 254–260. doi:10.1111/j.1467-9280.2007.01885.x. PMID 17444923.
  44. Lany, Jill; Saffran (January 2010). "From Statistics to Meaning: Infants' Acquisition of Lexical Categories". Psychological Science 21 (2): 284–91. doi:10.1177/0956797609358570. PMC 3865606. PMID 20424058.
  45. Lany, Jill; Saffran (January 2010). "From Statistics to Meaning: Infants' Acquisition of Lexical Categories". Psychological Science 21 (2): 284–91. doi:10.1177/0956797609358570. PMC 3865606. PMID 20424058.
  46. Freudenthal, Daniel; J.M. Pine, F. Gobet (2005). "Modelling the development of children's use of optional infinitives in English and Dutch using MOSAIC" (PDF). Cognitive Science 30 (2): 277–310. doi:10.1207/s15516709cog0000_47. PMID 21702816. Retrieved 2 April 2009.
  47. Jones, Gary; F. Gobet, J.M. Pine (2007). "Linking working memory and long-term memory: A computational model of the learning of new words" (PDF). Developmental Science 10 (6): 853–873. doi:10.1111/j.1467-7687.2007.00638.x. PMID 17973801. Retrieved 2 April 2009.
  48. Bannard C, Lieven E, Tomasello M (October 2009). "Modeling children's early grammatical knowledge". Proc. Natl. Acad. Sci. U.S.A. 106 (41): 17284–9. doi:10.1073/pnas.0905638106. PMC 2765208. PMID 19805057.
  49. White, EJ.; Hutka, SA.; Williams, LJ.; Moreno, S. (2013). "Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan.". Front Syst Neurosci 7: 90. doi:10.3389/fnsys.2013.00090. PMC 3834520. PMID 24312022.
  50. Kuhl P, Stevens E, Hayashi A, Deguchi T, Kiritani S, Iverson P; Stevens; Hayashi; Deguchi; Kiritani; Iverson (February 2006). "Infants show a facilitation effect for native language phonetic perception between 6 and 12 months". Developmental Science 9 (2): F13–F21. doi:10.1111/j.1467-7687.2006.00468.x. PMID 16472309.
  51. Pallier, Cristophe. "Critical periods in language acquisition and language attrition" (PDF).
  52. Curtiss, Susan (1977). Genie: a psycholinguistic study of a modern-day "wild child". Boston: Academic Press. ISBN 0-12-196350-0. OCLC 3073433.
  53. Schacter, Daniel L.; Gilbert, Daniel T.; Wegner, Daniel M. (2011) [2009]. "9". Psychology [Second Edition] (Second ed.). United States of America: Worth Publishers. pp. 351–352.
  54. "First Impressions: We start to pick up words, food preferences and hand-eye coordination long before being born", Scientific American, vol. 313, no. 1 (July 2015), p. 24.
  55. Beth Skwarecki, "Babies Learn to Recognize Words in the Womb", Science, 26 August 2013
  56. Bloom L. Hood L. Lichtbown P. (1974) Imitation in language, If, when, and why. Cognitive Psychology 6, 380–420.OCLC 65013247
  57. Miller, George A. (1977). Spontaneous apprentices: children and language. New York: Seabury Press. ISBN 0-8164-9330-8. OCLC 3002566.
  58. Masur EF. (1995) Infants' early verbal imitation and their later lexical development. Merrill-Palmer Quarterly, 41, 286–306.OCLC 89395784
  59. Gathercole SE. Baddeley AD. (1989). "Evaluation of the role of phonological STM in the development of vocabulary in children, A longitudinal study". Journal of Memory and Language 28 (2): 200–213. doi:10.1016/0749-596X(89)90044-2.
  60. Gathercole SE (2006). "Nonword repetition and word learning: The nature of the relationship" (PDF). Applied Psycholinguistics 27 (4): 513–543. doi:10.1017/S0142716406060383.
  61. Skoyles, JR (1998). "Speech phones are a replication code". Medical Hypotheses 50 (2): 167–73. doi:10.1016/S0306-9877(98)90203-1. PMID 9572572.
  62. Gupta Prahlad, MacWhinney Brian (1997). "Vocabulary acquisition and verbal short-term memory: Computational and neural bases". Brain and Language 59 (2): 267–333. doi:10.1006/brln.1997.1819. PMID 9299067.
  63. Regier Terry (2003). "Emergent constraints on word-learning: A computational review". Trends in Cognitive Sciences 7 (6): 263–268. doi:10.1016/S1364-6613(03)00108-6. PMID 12804693.
  64. Regier, T. (Nov 2005). "The emergence of words: attentional learning in form and meaning". Cogn Sci 29 (6): 819–65. doi:10.1207/s15516709cog0000_31. PMID 21702796.
  65. Hadzibeganovic Tarik, Cannas Sergio A (2009). "A Tsallis' statistics based neural network model for novel word learning". Physica A 388 (5): 732–746. doi:10.1016/j.physa.2008.10.042.
  66. Roy Deb K., Pentland Alex P. (2002). "Learning words from sights and sounds: A computational model". Cognitive Science 26: 113–146. doi:10.1207/s15516709cog2601_4.
  67. Fazly Afsaneh, Alishahi Afra, Stevenson Suzanne (2010). "A Probabilistic Computational Model of Cross-Situational Word Learning". Cognitive Science 34 (6): 1017–1063. doi:10.1111/j.1551-6709.2010.01104.x. PMID 21564243.
  68. Yu Chen, Ballard Dana H (2007). "A unified model of early word learning: Integrating statistical and social cues". Neurocomputing 70 (13–15): 2149–2165. doi:10.1016/j.neucom.2006.01.034.
  69. 1 2 Landauer, TK; Dumais, ST. (1997). "A solution to Plato's problem: The latent semantic analysis theory of acquisition" (PDF). Psychological Review 104: 211–240. doi:10.1037/0033-295x.104.2.211.
  70. Fry, Dennis (1977). Homo loquens, Man as a talking animal. Cambridge University Press. pp. 115–116. ISBN 0-521-29239-5.
  71. 1 2 Markman, Ellen M. (1990). "Constraints Children Place on Word Meanings" (PDF). Cognitive Science 14 (1): 57–77. doi:10.1207/s15516709cog1401_4.
  72. Bates, TC.; Luciano, M.; Medland, SE.; Montgomery, GW.; Wright, MJ.; Martin, NG. (Jan 2011). "Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits". Behav Genet 41 (1): 50–7. doi:10.1007/s10519-010-9402-9. PMID 20949370.
  73. Schacter, Daniel L.; Gilbert, Daniel Todd.; Wegner, Daniel M. (2011). Psycholog. New York, NY: Worth Publishers. p. 357. ISBN 978-1-4292-3719-2. OCLC 696604625.
  74. Hang, AX.; Kim, GG.; Zdanski, CJ. (Dec 2012). "Cochlear implantation in unique pediatric populations.". Curr Opin Otolaryngol Head Neck Surg 20 (6): 507–17. doi:10.1097/MOO.0b013e328359eea4. PMC 3512207. PMID 23128686.
  75. Meier, Richard (January–February 1991). "Language Acquisition by Deaf Children". American Scientist 79 (1): 60–70.
  76. 1 2 Petitto, LA.; Holowka, S.; Sergio, LE.; Levy, B.; Ostry, DJ. (Aug 2004). "Baby hands that move to the rhythm of language: hearing babies acquiring sign languages babble silently on the hands.". Cognition 93 (1): 43–73. doi:10.1016/j.cognition.2003.10.007. PMID 15110725.
  77. 1 2 3 McKinley, A. M.; Warren, S. F. (2000). "The Effectiveness of Cochlear Implants for Children With Prelingual Deafness" (PDF). Journal of Early Intervention 23 (4): 252–263. doi:10.1177/10538151000230040501.

Further reading

External links

This article is issued from Wikipedia - version of the Sunday, February 14, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.