Saccheri quadrilateral

Saccheri quadrilaterals

A Saccheri quadrilateral (also known as a Khayyam–Saccheri quadrilateral) is a quadrilateral with two equal sides perpendicular to the base. It is named after Giovanni Gerolamo Saccheri, who used it extensively in his book Euclides ab omni naevo vindicatus (literally Euclid Freed of Every Flaw) first published in 1733, an attempt to prove the parallel postulate using the method Reductio ad absurdum.

The first known consideration of the Saccheri quadrilateral was by Omar Khayyam in the late 11th century, and it may occasionally be referred to as the Khayyam-Saccheri quadrilateral.[1]

For a Saccheri quadrilateral ABCD, the sides AD and BC (also called the legs) are equal in length and perpendicular to the base AB. The top CD is the summit or upper base and the angles at C and D are called the summit angles.

The advantage of using Saccheri quadrilaterals when considering the parallel postulate is that they place the mutually exclusive options in very clear terms:

Are the summit angles right angles, obtuse angles, or acute angles?

As it turns out:

Saccheri himself, however, thought that both the obtuse and acute cases could be shown to be contradictory. He did show that the obtuse case was contradictory, but failed to properly handle the acute case.[3]

History

Saccheri quadrilaterals were first considered by Omar Khayyam (1048-1131) in the late 11th century in Book I of Explanations of the Difficulties in the Postulates of Euclid.[1] Unlike many commentators on Euclid before and after him (including of course Saccheri), Khayyam was not trying to prove the parallel postulate as such but to derive it from an equivalent postulate he formulated from "the principles of the Philosopher" (Aristotle):

Two convergent straight lines intersect and it is impossible for two convergent straight lines to diverge in the direction in which they converge.[4]

Khayyam then considered the three cases right, obtuse, and acute that the summit angles of a Saccheri quadrilateral can take and after proving a number of theorems about them, he (correctly) refuted the obtuse and acute cases based on his postulate and hence derived the classic postulate of Euclid.

It was not until 600 years later that Giordano Vitale made an advance on Khayyam in his book Euclide restituo (1680, 1686), when he used the quadrilateral to prove that if three points are equidistant on the base AB and the summit CD, then AB and CD are everywhere equidistant.

Saccheri himself based the whole of his long, heroic, and ultimately flawed proof of the parallel postulate around the quadrilateral and its three cases, proving many theorems about its properties along the way.

Saccheri quadrilaterals in Hyperbolic geometry

Let ABCD be a Saccheri quadrilateral having AB as base, CA and DB the equal sides that are perpendicular to the base and CD the summit. The following properties are valid in any Saccheri quadrilateral in hyperbolic geometry.[5]

Equations

In the hyperbolic plane of constant curvature -1, the summit s of a Saccheri quadrilateral can be calculated from the leg l and the base b using the formula

\cosh s = (\cosh b -1) \cosh^2 l + 1 = \cosh b \cdot \cosh^2 l - \sinh^2 l[6]
\sinh \left( \frac{s}{2} \right) = \cosh\left( l \right) \sinh\left( \frac{b}{2} \right) [7]

Tilings in the Poincaré disk model

Tilings of the Poincaré disk model of the Hyperbolic plane exist having Saccheri quadrilaterals as fundamental domains. Besides the 2 right angles, these quadrilaterals have acute summit angles. The tilings exhibit a *nn22 symmetry (orbifold notation), and include:


*3322 symmetry

*22 symmetry

See also

Notes

  1. 1 2 Boris Abramovich Rozenfelʹd (1988). A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space (Abe Shenitzer translation ed.). Springer. p. 65. ISBN 0-387-96458-4.
  2. Coxeter 1998, pg. 11
  3. Faber 1983, pg. 145
  4. Boris A Rosenfeld and Adolf P Youschkevitch (1996), Geometry, p.467 in Roshdi Rashed, Régis Morelon (1996), Encyclopedia of the history of Arabic science, Routledge, ISBN 0-415-12411-5.
  5. Faber 1983, pp. 146 - 147
  6. P. Buser and H. Karcher. Gromov's almost flat manifolds. Asterisque 81 (1981), page 104.
  7. Greenberg, Marvin Jay (2003). Euclidean and non-Euclidean geometries : development and history (3rd ed.). New York: Freeman. p. 411. ISBN 9780716724469.

References

This article is issued from Wikipedia - version of the Sunday, February 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.