Kempf vanishing theorem

In algebraic geometry, the Kempf vanishing theorem, introduced by Kempf (1976), states that the higher cohomology group Hi(G/B,L(λ)) (i > 0) vanishes whenever λ is a dominant weight of B. Here G is a reductive algebraic group over an algebraically closed field, B a Borel subgroup, and L(λ) a line bundle associated to λ. In characteristic 0 this is a special case of the Borel–Weil–Bott theorem, but unlike the Borel–Weil–Bott theorem, the Kempf vanishing theorem still holds in positive characteristic.

Andersen (1980) and Haboush (1980) found simpler proofs of the Kempf vanishing theorem using the Frobenius morphism.

References

This article is issued from Wikipedia - version of the Wednesday, December 10, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.