KIF1C
Kinesin-like protein KIF1C is a protein that in humans is encoded by the KIF1C gene.[1][2] Kif1C is a fast, non-processive, plus-end directed microtubule motor.[3] Kif1C transports α5β1-integrins in human cells.[4]
Interactions
KIF1C has been shown to interact with PTPN21[1] and YWHAG.[5]
References
- 1 2 Dorner C, Ciossek T, Muller S, Moller PH, Ullrich A, Lammers R (Sep 1998). "Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum". J Biol Chem 273 (32): 20267–75. doi:10.1074/jbc.273.32.20267. PMID 9685376.
- ↑ "Entrez Gene: KIF1C kinesin family member 1C".
- ↑ Rogers KR, Weiss S, Crevel I, Brophy PJ, Geeves M, Cross R (September 2001). "KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry". EMBO J. 20 (18): 5101–13. doi:10.1093/emboj/20.18.5101. PMC 125638. PMID 11566875.
- ↑ Theisen U, Straube E, Straube A (December 2012). "Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions". Dev. Cell 23 (6): 1153–66. doi:10.1016/j.devcel.2012.11.005. PMID 23237952.
- ↑ Dorner C, Ullrich A, Häring HU, Lammers R (November 1999). "The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family". J. Biol. Chem. 274 (47): 33654–60. doi:10.1074/jbc.274.47.33654. PMID 10559254.
Further reading
- Ishikawa K, Nagase T, Suyama M, et al. (1998). "Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Res. 5 (3): 169–76. doi:10.1093/dnares/5.3.169. PMID 9734811.
- Dorner C, Ullrich A, Häring HU, Lammers R (1999). "The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family". J. Biol. Chem. 274 (47): 33654–60. doi:10.1074/jbc.274.47.33654. PMID 10559254.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
- Kopp P, Lammers R, Aepfelbacher M, et al. (2006). "The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages". Mol. Biol. Cell 17 (6): 2811–23. doi:10.1091/mbc.E05-11-1010. PMC 1474789. PMID 16554367.
- Beausoleil SA, Villén J, Gerber SA, et al. (2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nat. Biotechnol. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID 16964243.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
|
This article is issued from Wikipedia - version of the Thursday, October 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.