Minimally-invasive procedures
Minimally-invasive procedures | |
---|---|
Intervention | |
Endovascular aneurysm repair -example of minimally-invasive procedure | |
eMedicine | 938198 |
Minimally-invasive procedures (also known as minimally-invasive surgeries) have been enabled by the advance of various medical technologies. Surgery by definition is invasive and many operations requiring incisions of some size, are referred to as open surgery. Incisions made can sometimes leave large wounds that are painful and take a long time to heal. Minimally-invasive surgery refers to surgical techniques that limit the size of incisions needed and so lessens wound healing time, associated pain and risk of infection. An endovascular aneurysm repair as an example of minimally-invasive surgery is much less invasive in that it involves much smaller incisions, than the corresponding open surgery procedure of open aortic surgery. This minimally-invasive surgery became the most common method of repairing abdominal aortic aneurysms in 2003 in the United States.[1]
The front-runners of minimally-invasive procedures were interventional radiologists. By the use of imaging techniques, interventional instruments could be directed throughout the body by the radiologists by way of catheters instead of large incisions needed in traditional surgery. So that many conditions once requiring surgery can now be treated non-surgically.[2]
Diagnostic techniques that do not involve the puncturing of the skin or incision, or the introduction into the body of foreign objects or materials are known as non-invasive procedures.[3] There are also several treatment procedures that are classed as non-invasive. A major example of a non-invasive alternative treatment to surgery is radiation therapy also called radiotherapy.[4]
Medical uses
Minimally-invasive procedures were pioneered by interventional radiologists who had first introduced angioplasty and the catheter-delivered stent. Many other minimally-invasive procedures have followed where images of all parts of the body can be obtained and used to direct interventional instruments by way of catheters (needles and fine tubes). So that many conditions once requiring open surgery can now be treated non-surgically.[5] A minimally-invasive procedure typically involves the use of arthroscopic (for joints and the spine) or laparoscopic devices and remote-control manipulation of instruments with indirect observation of the surgical field through an endoscope or large scale display panel, and is carried out through the skin or through a body cavity or anatomical opening. Interventional radiology now offers many techniques that avoid the need for surgery.[6]
By use of a MIP, a patient may require only a band-aid on the incision, rather than multiple stitches or staples to close a large incision. This usually results in less infection, a quicker recovery time and shorter hospital stays, or allow outpatient treatment.[7] However, the safety and effectiveness of each procedure must be demonstrated with randomized controlled trials. The term was coined by John EA Wickham in 1984, who wrote of it in British Medical Journal in 1987.[8] A minimally invasive procedure is distinct from a non-invasive procedure, such as external imaging instead of exploratory surgery. When there is minimal damage of biological tissues at the point of entrance of instrument(s), the procedure is called minimally invasive.
Specific procedures
Many medical procedures are called minimally-invasive; those that involve small incisions through which an endoscope is inserted, end in the suffix -oscopy, such as endoscopy, laparoscopy, arthroscopy. Other examples of minimally-invasive procedures are the use of hypodermic injection, and air-pressure injection, subdermal implants, refractive surgery, percutaneous surgery, cryosurgery, microsurgery, keyhole surgery, endovascular surgery using interventional radiology (such as angioplasty), coronary catheterization, permanent placement of spinal and brain electrodes, stereotactic surgery, the Nuss procedure, radioactivity-based medical imaging methods, such as gamma camera, positron emission tomography and SPECT (single photon emission tomography). Related procedures are image-guided surgery,and robotic surgery[9]
Benefits
Minimally-invasive surgery should have less operative trauma, other complications and adverse effects than an equivalent open surgery. It may be more or less expensive (for dental implants, a minimally-invasive method reduces the cost of installed implants and shortens the implant-prosthetic rehabilitation time with 4–6 months[10]). Operative time is longer, but hospitalization time is shorter. It causes less pain and scarring, speeds recovery, and reduces the incidence of post-surgical complications, such as adhesions and wound dehiscence (rupture). Some studies have compared heart surgery.[11] However, minimally invasive surgery is not necessarily minor surgery that only requires local anesthesia. In fact, most of these procedures still require general anesthesia to be administered beforehand.
Risks
Risks and complications of minimally-invasive procedures are the same as for any other surgical operation and include:
- Anesthesia or medication reactions
- Bleeding
- Infection
- Adhesions[12]
- Internal organ injury
- Blood vessel injury
- Vein or lung blood clotting
- Breathing problems
- Death[13]
There may be an increased risk of hypothermia and peritoneal trauma due to increased exposure to cold, dry gases during insufflation. The use of surgical humidification therapy, which is the use of heated and humidified CO2 for insufflation, may reduce this risk.[14]
Equipment
Special medical equipment may be used, such as fiber optic cables, miniature video cameras and special surgical instruments handled via tubes inserted into the body through small openings in its surface. The images of the interior of the body are transmitted to an external video monitor and the surgeon has the possibility of making a diagnosis, visually identifying internal features and acting surgically on them.
Invasive procedures
Sometimes the use of non-invasive methods is not an option, so that the next level of minimally-invasive techniques are looked to. These include the use of hypodermic injection (using the syringe), an endoscope, percutaneous surgery which involves needle puncture of the skin, laparoscopic surgery commonly called keyhole surgery, a coronary catheter, angioplasty and stereotactic surgery.
Open surgery
‘’Open surgery’’ is any surgical procedure, where the incision made is enough to allow the surgery to take place. With tissues and structures exposed to the air, the procedure can be performed either with the unaided vision of the surgeon or with the use of loupes or microscopes. Some examples of open surgery used, are for herniated disc commonly called a ‘’slipped disc’’, and most types of cardiac surgery and neurosurgery. These techniques have accelerated the healing process of otherwise larger wounds and so also have minimalised the pain associated with large wound healing. Also the more precise methods used, mean that damage to surrounding healthy tissues is greatly reduced.
Non-invasive procedure
A medical procedure is defined as non-invasive when no break in the skin is created and there is no contact with the mucosa, or skin break, or internal body cavity beyond a natural or artificial body orifice. For example, deep palpation and percussion are non-invasive but a rectal examination is invasive. Likewise, examination of the ear-drum or inside the nose or a wound dressing change all fall outside the definition of non-invasive procedure. There are many non-invasive procedures, ranging from simple observation, to specialised forms of surgery, such as radiosurgery. Extracorporeal shock wave lithotripsy is a non-invasive treatment of stones in the kidney,[15]gallbladder or liver, using an acoustic pulse.For centuries, physicians have employed many simple non-invasive methods based on physical parameters in order to assess body function in health and disease (physical examination and inspection), such as pulse-taking, the auscultation of heart sounds and lung sounds (using the stethoscope), temperature examination (using thermometers), respiratory examination, peripheral vascular examination, oral examination, abdominal examination, external percussion and palpation, blood pressure measurement (using the sphygmomanometer), change in body volumes (using plethysmograph), audiometry, eye examination, and many others.
Diagnostic images
- Bioluminescence imaging
- Dermatoscopy
- Diffuse optical tomography
- Gamma camera
- Computed Tomography
- Infrared imaging of the body
- Magnetic resonance elastography
- Magnetic resonance imaging, using external magnetic fields
- Magnetic resonance spectroscopy
- Optical coherence tomography
- Posturography
- Radiography, fluoroscopy and computed tomography
- Ultrasonography and echocardiography
Diagnostic signals
- Electrocardiography (EKG)
- Electroencephalography (EEG)
- Electromyography (EMG)
- Photoplethysmograph(PPG)
- Electrical impedance tomography (EIT)
- Electroneuronography (ENoG)
- Electroretinography (ERG)
- Electronystagmography (ENG)
- Magnetoencephalography (MEG)
- Evoked potentials
- Impedance phlebography
- Nuclear magnetic resonance spectroscopy
Therapy
In terms of therapy these include Radiation therapy, Brachytherapy, Lithotripsy, Defibrillation, Biofeedback, VPAP, BIPAP, Neurally Adjusted Ventilatory Assist, Biphasic Cuirass Ventilation , and Therapeutic ultrasound
See also
- Anesthesia
- ASA physical status classification system or pre-operative physical fitness
- Medicine
- Natural orifice translumenal endoscopic surgery
- Traumatology
- Biomedical engineering
- Molecular Imaging
References
- ↑ Sethi RK, Henry AJ, Hevelone ND, Lipsitz SR, Belkin M, Nguyen LL (September 2013). "Impact of hospital market competition on endovascular aneurysm repair adoption and outcomes.". J. Vasc. Surg. 58 (3): 596–606. doi:10.1016/j.jvs.2013.02.014. PMID 23684424.
- ↑ Society of Interventional Radiology -- Global Statement Defining Interventional radiology. http://www.sirweb.org/news/newsPDF/IR_Global_Statement.pdf
- ↑ Dorland's (2012). Dorland's Illustrated Medical Dictionary (32nd ed.). Elsevier. p. 955. ISBN 978-1-4160-6257-8.
- ↑ Daniel Albert (2012). Dorland's illustrated medical dictionary. (32nd ed.). Philadelphia, PA: Saunders/Elsevier. p. 1573. ISBN 978-1-4160-6257-8.
- ↑ Society of Interventional Radiology -- Global Statement Defining Interventional radiology. http://www.sirweb.org/news/newsPDF/IR_Global_Statement.pdf
- ↑ Society of Interventional Radiology -- Global Statement Defining Interventional radiology. http://www.sirweb.org/news/newsPDF/IR_Global_Statement.pdf
- ↑ NCBI, National Center for Biotechnology Information, NCBI, MeSH, Medical SubHeadings, NLM, National Library of Medicine
- ↑ Wickham JE' (1987-12-19). "The new surgery". Br Med J 295: 1581–1582. doi:10.1136/bmj.295.6613.1581.
- ↑ Ahmed K, Khan MS, Vats A, et al. (October 2009). "Current status of robotic assisted pelvic surgery and future developments". International Journal of Surgery 7 (5): 431–40. doi:10.1016/j.ijsu.2009.08.008. PMID 19735746.
- ↑ Topalo V, Chele N (March 2012). "Minimally invasive method of early dental implant placement in two surgical steps". Revista de chirurgie oro-maxilo-facială și implantologie (in Romanian) 3 (1): 16–23. ISSN 2069-3850. 60. Retrieved 2012-08-19.(webpage has a translation button)
- ↑ Kilger E, Weis FC, Goetz AE, et al. (March 2001). "Intensive care after minimally invasive and conventional coronary surgery: a prospective comparison". Intensive Care Medicine 27 (3): 534–9. doi:10.1007/s001340000788. PMID 11355122.
- ↑ Peng Y, Zheng M, Ye Q, Chen X, Yu B, Liu B (January 2009). "Heated and humidified CO2 prevents hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged laparoscopic insufflations". The Journal of Surgical Research 151 (1): 40–7. doi:10.1016/j.jss.2008.03.039. PMID 18639246.
- ↑ "Risks and Complications"
- ↑ Peng Y, Zheng M, Ye Q, Chen X, Yu B, Liu B (January 2009). "Heated and humidified CO2 prevents hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged laparoscopic insufflations". The Journal of Surgical Research 151 (1): 40–7. doi:10.1016/j.jss.2008.03.039. PMID 18639246.
- ↑ Srisubat, A; Potisat1, S; Lojanapiwat, B; Setthawong, V; Laopaiboon, M (24 November 2014). "Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones". The Cochrane Library 11: CD007044. doi:10.1002/14651858.CD007044.pub3. PMID 25418417. Retrieved 2 April 2015.
Further reading
- "http://www.sciencedaily.com/releases/2005/11/051128081619.htm". www.sciencedaily.com. Retrieved 2015-08-03. External link in
|title=
(help) - Tachibana K (March 2004). "Emerging technologies in therapeutic ultrasound: thermal ablation to gene delivery". Human Cell 17 (1): 7–15. doi:10.1111/j.1749-0774.2004.tb00015.x. PMID 15369132.
- Kim PE, Singh M (July 2003). "Functional magnetic resonance imaging for brain mapping in neurosurgery". Neurosurgical Focus 15 (1): E1. doi:10.3171/foc.2003.15.1.1. PMID 15355003.
- Richie RC (2002). "Non-invasive assessment of the risk of coronary heart disease". Journal of Insurance Medicine 34 (1): 31–42. PMID 15303592.
- Golder W (June 2004). "Magnetic resonance spectroscopy in clinical oncology". Onkologie 27 (3): 304–9. doi:10.1159/000077983. PMID 15249722.
- Cherry SR (February 2004). "In vivo molecular and genomic imaging: new challenges for imaging physics". Physics in Medicine and Biology 49 (3): R13–48. doi:10.1088/0031-9155/49/3/R01. PMID 15012005.
- Lymberis A, Olsson S (2003). "Intelligent biomedical clothing for personal health and disease management: state of the art and future vision". Telemedicine Journal and E-health 9 (4): 379–86. doi:10.1089/153056203772744716. PMID 14980096.
- Söling A, Rainov NG (October 2003). "Bioluminescence imaging in vivo - application to cancer research". Expert Opinion on Biological Therapy 3 (7): 1163–72. doi:10.1517/14712598.3.7.1163. PMID 14519079.
- Rohrscheib M, Robinson R, Eaton RP (September 2003). "Non-invasive glucose sensors and improved informatics--the future of diabetes management". Diabetes, Obesity & Metabolism 5 (5): 280–4. doi:10.1046/j.1463-1326.2003.00275.x. PMID 12940864.
- Jacobs AH, Winkeler A, Dittmar C, Hilker R, Heiss WD (2002). "Prospects of molecular imaging in neurology". Journal of Cellular Biochemistry. Supplement 39: 98–109. doi:10.1002/jcb.10414. PMID 12552609.
- Malhi GS, Valenzuela M, Wen W, Sachdev P (February 2002). "Magnetic resonance spectroscopy and its applications in psychiatry". The Australian and New Zealand Journal of Psychiatry 36 (1): 31–43. doi:10.1046/j.1440-1614.2002.00992.x. PMID 11929436.
- Jacobs A, Heiss WD (April 2002). "Towards non-invasive imaging of HSV-1 vector-mediated gene expression by positron emission tomography". Veterinary Microbiology 86 (1-2): 27–36. doi:10.1016/S0378-1135(01)00488-6. PMID 11888687.
- Leman JA, Morton CA (January 2002). "Photodynamic therapy: applications in dermatology". Expert Opinion on Biological Therapy 2 (1): 45–53. doi:10.1517/14712598.2.1.45. PMID 11772339.
- Richter JE (November 1997). "Ambulatory esophageal pH monitoring". The American Journal of Medicine 103 (5A): 130S–134S. doi:10.1016/S0002-9343(97)00338-0. PMID 9422638.
External links
- Minimally invasive heart surgery. Medical Encyclopedia, MedlinePlus.
|