Integral of secant cubed

The integral of secant cubed is a frequent and challenging[1] indefinite integral of elementary calculus:

\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.

There are a number of reasons why this particular antiderivative is worthy of special attention:

\int \sqrt{a^2+x^2}\,dx,
where a is a constant. In particular, it appears in the problems of:

Derivations

Integration by parts

This antiderivative may be found by integration by parts, as follows:

 \int \sec^3 x \, dx = \int u\,dv

where


\begin{align}
dv &{}= \sec^2 x\,dx, \\
v &{}= \tan x, \\
u &{}= \sec x, \\
du &{}= \sec x \tan x\,dx.
\end{align}

Then


\begin{align}
\int \sec^3 x \, dx &{}= \int u\,dv \\
&{}= uv - \int v\,du \\
&{} = \sec x \tan x - \int \sec x \tan^2 x\,dx \\
&{}= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\
&{}= \sec x \tan x - \left(\int \sec^3 x \, dx - \int \sec x\,dx.\right) \\
&{}= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx.
\end{align}

Here we have assumed already known the integral of the secant function.

Next we add \scriptstyle{}\int\sec^3 x\,dx to both sides of the equality just derived:


\begin{align}
2 \int \sec^3 x \, dx &{}= \sec x \tan x + \int \sec x\,dx \\
&{}= \sec x \tan x + \ln|\sec x + \tan x| + C.
\end{align}

Then divide both sides by 2:

\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C_1.

Reduction to an integral of a rational function


\int \sec^3 x \, dx = \int \frac{dx}{\cos^3 x} = \int \frac{\cos x\,dx}{\cos^4 x} = \int \frac{\cos x\,dx}{(1-\sin^2 x)^2} = \int \frac{du}{(1-u^2)^2}

where u = \sin x, so that du = \cos x\,dx. This admits a decomposition by partial fractions:

 \frac{1}{(1-u^2)^2} = \frac{1/4}{1-u} + \frac{1/4}{(1-u)^2} + \frac{1/4}{1+u} + \frac{1/4}{(1+u)^2}.

Antidifferentiating term-by-term, one gets


\begin{align}
& -\frac 1 4\ln (1-u) + \frac{1/4}{1-u} + \frac 1 4 \ln(1+u) - \frac{1/4}{1+u} + C = \frac 1 4 \ln \frac{1+u}{1-u} + \frac 1 2 \frac{u}{1-u^2} + C \\[8pt]
= & \frac 1 4 \ln\frac{1+\sin x}{1-\sin x} + \frac 1 2 \frac{\sin x}{\cos^2 x} = \frac 1 4 \ln\frac{1+\sin x}{1-\sin x} + \frac 1 2 \sec x \tan x + C.
\end{align}

Hyperbolic functions

Integrals of the form:  \int \sec^n x \tan^m x\, dx can be reduced using the Pythagorean identity if n is even or n and m are both odd. If n is odd and m is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power reducing formulas.

 
\begin{align}
\sec x &{}= \cosh u \\
\tan x &{}= \sinh u \\
\sec^2 x \, dx &{}= \cosh u \, du \text{ or } \sec x \tan x\, dx = \sinh u \, du\\
\sec x \, dx &{}= \, du \text{ or } dx = \operatorname{sech} u \, du \\
u &{}= \operatorname{arcosh} (\sec x ) = \operatorname{arsinh} ( \tan x ) = \ln|\sec x + \tan x|
\end{align}

Note that  \int \sec x \, dx = \ln|\sec x + \tan x| follows directly from this substitution.


\begin{align}
\int \sec^3 x \, dx &{}= \int \cosh^2 u\,du \\
&{}= \frac{1}{2}\int ( \cosh 2u +1) \,du \\
&{}= \frac{1}{2} \left( \frac{1}{2}\sinh2u + u\right) + C\\
&{}= \frac{1}{2} ( \sinh u \cosh u + u ) + C \\
&{}= \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x| + C
\end{align}

Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:

 \int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2} x \, dx \qquad \text{ (for }n \ne 1\text{)}\,\!

Alternatively:

 \int \sec^n x \, dx = \frac{\sec^{n-1} x \sin x}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2} x \, dx \qquad \text{ (for }n \ne 1\text{)}\,\!

Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.

See also

References

  1. Spivak, Michael (2008). "Integration in Elementary Terms". Calculus. p. 382. This is a tricky and important integral that often comes up.
This article is issued from Wikipedia - version of the Sunday, June 07, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.