Hot Jupiter

An artist's impression of a hot Jupiter planet.
An artist's impression of a hot Jupiter of HD 188753

Hot Jupiters (also called roaster planets,[1] epistellar jovians,[2][3] pegasids[4][5] or pegasean planets) are a class of extrasolar planets whose characteristics are similar to Jupiter, but that have high surface temperatures because they orbit very close[6]—between approximately 0.015 and 0.5 astronomical units (2.2×10^6 and 74.8×10^6 km)—to their parent stars,[7] whereas Jupiter orbits its parent star (the Sun) at 5.2 astronomical units (780×10^6 km), causing low surface temperatures.

One of the best-known hot Jupiters is 51 Pegasi b, nicknamed Bellerophon. Discovered in 1995, it was the first extrasolar planet found orbiting a Sun-like star. 51 Pegasi b has an orbital period of about 4 days.

General characteristics

Hot Jupiters (along left edge, including most of planets detected using the transit method, indicated with black dots) discovered up to 2 January 2014.

Hot Jupiters have some common characteristics:

Hot Jupiters are the easiest extrasolar planets to detect via the radial-velocity method, because the oscillations they induce in their parent stars' motion are relatively large and rapid, compared to other known types of planets.

Artist’s impression of the ten hot Jupiter exoplanets. Several of the planets exhibit strong Rayleigh scattering, causing the blue hue of the daytime sky and the reddening of the Sun at sunset on Earth.[10]

They are thought to form at a distance from the star beyond the frost line, where the planet can form from rock, ice and gases. The planets then migrate inwards to the star where they eventually form a stable orbit.[11] The planets usually move by type 2 migrations, or possibly via interaction with other planets. The migration happens during the solar nebula phase, and will typically stop when the star enters its T-Tauri phase. The strong stellar winds at this time remove most of the remaining nebula.

After their atmospheres and outer layers are stripped away (hydrodynamic escape), their cores may become chthonian planets. The amount of the outermost layers that is lost depends on the size and the material of the planet and the distance from the star. In a typical system a gas giant orbiting 0.02 AU around its parent star loses 5–7% of its mass during its lifetime, but orbiting closer than 0.015 AU can mean evaporation of the whole planet except for its core.[12]

Terrestrial planets in systems with hot Jupiters

Simulations have shown that the migration of a Jupiter-sized planet through the inner protoplanetary disk (the region between 5 and 0.1 AU from the star) is not as destructive as one might assume. More than 60% of the solid disk materials in that region are scattered outward, including planetesimals and protoplanets, allowing the planet-forming disk to reform in the gas giant's wake.[13] In the simulation, planets up to two Earth masses were able to form in the habitable zone after the hot Jupiter passed through and its orbit stabilized at 0.1 AU. Due to the mixing of inner-planetary-system material with outer-planetary-system material from beyond the frost line, simulations indicated that the terrestrial planets that formed after a hot Jupiter's passage would be particularly water-rich.[13]

In 2015, two planets were discovered around WASP-47. One was potentially a large terrestrial planet, with less than 22 Earth masses and 1.8 Earth radii, the other is of similar mass at 15.2 Earth masses but with 3.6 Earth radii it is almost certainly a gas giant. They orbit on either side of a previously discovered hot Jupiter, the smaller closer in.[14]

Retrograde orbit

It has been found that several hot Jupiters have retrograde orbits and this calls into question the theories about the formation of planetary systems,[15] although rather than a planet's orbit having been disturbed, it may be that the star itself flipped over early in their system's formation due to interactions between the star's magnetic field and the planet-forming disc.[16] By combining new observations with the old data it was found that more than half of all the hot Jupiters studied have orbits that are misaligned with the rotation axis of their parent stars, and six exoplanets in this study have retrograde motion.

Ultra-short-period Jupiters

Ultra-short-period Jupiters are a class of hot Jupiters with orbital periods below 1 day and occur only around stars of less than about 1.25 solar masses.[17]

Five ultra-short-period planet candidates have been identified in the region of the Milky Way known as the galactic bulge. They were observed by the Hubble Space Telescope and first described by researchers from the Space Telescope Science Institute, the Universidad Catolica de Chile, Uppsala University, the High Altitude Observatory, the INAF–Osservatorio Astronomico di Padova, and the University of California, Los Angeles.[17]

Confirmed transiting hot Jupiters that have orbital periods of less than one day include WASP-18b, WASP-19b, WASP-43b and WASP-103b.[18]

Puffy planets

Gas giants with a large radius and very low density are sometimes called "puffy planets"[19] or "hot Saturns", due to their density being similar to Saturn's. Puffy planets orbit close to their stars so that the intense heat from the star combined with internal heating within the planet will help inflate the atmosphere. Six large-radius low-density planets have been detected by the transit method. In order of discovery they are: HAT-P-1b,[20][21] COROT-1b, TrES-4, WASP-12b, WASP-17b, and Kepler-7b. Some hot Jupiters detected by the radial-velocity method may be puffy planets. Most of these planets are below two Jupiter masses as more massive planets have stronger gravity keeping them at roughly Jupiter's size.

Even when taking heating from the star into account, many transiting hot Jupiters have a larger radius than expected. This could be caused by the interaction between the stellar wind and the planet's magnetosphere creating an electric current through the planet that heats it up, causing it to expand. The more magnetically active a star is the greater the magnitude of the interaction and the larger the electric current, leading to more heating and expansion of the planet. This theory matches the observation that stellar activity is correlated with inflated planetary radii.[22]

Moons

Theoretical research suggests that hot Jupiters are unlikely to have moons due to both a small Hill sphere and the tidal forces of the stars they orbit, which would destabilize the satellites' orbits, the latter process being stronger for larger moons. This means that for most hot Jupiters stable satellites would be small, asteroid-sized bodies.[23]

Hot Jupiters around red giants

It has been proposed that, even though no planet of this type has been found until now, gas giants orbiting red giants at distances similar to that of Jupiter could be hot Jupiters due to the intense irradiation they would receive from their stars. It is very likely that in the Solar System Jupiter will become a hot Jupiter when the Sun becomes a red giant.[24]

Hot Jupiters orbiting red giants would differ from those orbiting main-sequence stars in a number of ways, most notably the possibility of accreting material from the stellar winds of their stars and, assuming a fast rotation (not tidally locked to their stars), a much more evenly distributed heat with many narrow-banded jets. Their detection using the transit method would be much more difficult due to their tiny size compared to the stars they orbit, as well as the long time needed (months or even years) for one to transit their star as well as to be occulted by it.[24]

See also

References

  1. Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B.; Marley, M. S.; Lodders, K. (2004), "Predicting the Atmospheric Composition of Extrasolar Giant Planets" (PDF), 35th Lunar and Planetary Science Conference (Lunar and Planetary Science Conference) 35: 1152, Bibcode:2004LPI....35.1152S
  2. Darling, David, epistellar jovians, The Internet Encyclopedia of Science
  3. Odenwald, Sten, What is an "Epistellar Jovian Exoplanet"?, The Astronomy Cafe
  4. Interiors of extrasolar planets: A first step (PDF), Astronomy & Astrophysics, 2006-05-30
  5. Than, Ker (2006-06-05), Inside Exoplanets: Motley Crew of Worlds Share Common Thread, Space.com
  6. 1 2 Flipping Hot Jupiters : Northwestern University Newscenter
  7. Mathiesen, Ben (2006-03-19), 'Hot Jupiter' Systems may Harbor Earth-like Planets, PhysOrg.com
  8. Fabrycky, D. and Tremaine, S. (2007-11-10). "Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction". ApJ 669: 1298–1315. doi:10.1086/521702.
  9. Characterizing the Cool KOIs II. The M Dwarf KOI-254 and its Hot Jupiter: John Asher Johnson, J. Zachary Gazak, Kevin Apps, Philip S. Muirhead, Justin R. Crepp, Ian J. M. Crossfield, Tabetha Boyajian, Kaspar von Braun, Barbara Rojas-Ayala, Andrew W. Howard, Kevin R. Covey, Everett Schlawin, Katherine Hamren, Timothy D. Morton, James P. Lloyd
  10. "Hubble reveals diversity of exoplanet atmospheres". Retrieved 15 December 2015.
  11. Chambers, John (2007-07-01). Planet Formation with Type I and Type II Migration. AAS/Division of Dynamical Astronomy Meeting. Bibcode:2007DDA....38.0604C.
  12. "Exoplanets Exposed to the Core". 2009-04-25. Retrieved 2009-04-25.
  13. 1 2 Fogg, Martyn J.; Nelson, Richard P. (2007), "On the formation of terrestrial planets in hot-Jupiter systems", A&A 461 (3): 1195–1208, arXiv:astro-ph/0610314, Bibcode:2007A&A...461.1195F, doi:10.1051/0004-6361:20066171.
  14. Becker, Juliette C.; et al. (10 August 2015). "WASP-47: A Hot Jupiter System with Two Additional Planets Discovered by K2". The Astrophysical Journal Letters (Letter) (IOP Publishing, published October 2015) 812 (2). arXiv:1508.02411. Bibcode:2015ApJ...812L..18B. doi:10.1088/2041-8205/812/2/L18. The mass of WASP-47d is 15.2±7 M⊕. Only an upper limit can be placed on WASP-47e of <22M⊕.
  15. "Turning planetary theory upside down", ESO Press Release (Royal Astronomical Society), 2010-04-13: 16, Bibcode:2010eso..pres...16
  16. Tilting stars may explain backwards planets, New Scientist, 01 September 2010, Magazine issue 2776.
  17. 1 2 Sahu, K.C. et al. 2006. Transiting extrasolar planetary candidates in the Galactic bulge. Nature 443:534-540
  18. WASP Planets
  19. Chang, Kenneth (2010-11-11). "Puzzling Puffy Planet, Less Dense Than Cork, Is Discovered". The New York Times.
  20. Ker Than (2006-09-14). "Puffy 'Cork' Planet Would Float on Water". Space.com. Retrieved 2007-08-08.
  21. "Puffy planet poses pretty puzzle". BBC News. 2006-09-15. Retrieved 2010-03-17.
  22. Stellar Magnetic Fields as a Heating Source for Extrasolar Giant Planets, D. Buzasi, (Submitted on 6 Feb 2013)
  23. "Stability of Satellites around Close-in Extrasolar Giant Planets
  24. 1 2 Jupiter will Become a Hot Jupiter: Consequences of Post-main-sequence Stellar Evolution on Gas Giant Planets

External links

This article is issued from Wikipedia - version of the Monday, February 15, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.