Protein dimer
For other uses, see Dimer.
In biochemistry, a dimer is a macromolecular complex formed by two, usually non-covalently bound, macromolecules such as proteins or nucleic acids. It is a quaternary structure of a protein.
A homodimer is formed by two identical molecules (a process called homodimerisation). A heterodimer is formed by two different macromolecules (called heterodimerisation).
Most dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains.[1] An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO.[2]
Some proteins contain specialized domains to ensure dimerization (dimerization domains).
Examples
- Antibodies
- Receptor tyrosine kinases
- Transcription factors
- Leucine zipper motif proteins
- Nuclear receptors
- 14-3-3 proteins
- G protein-coupled receptors
- G protein βγ-subunit dimer
- Kinesin
- Triosephosphateisomerase (TIM)
- Alcohol dehydrogenase
- Factor XI
- Factor XIII
- Toll-like receptor
- Fibrinogen
- Variable surface glycoproteins of the Trypanosoma parasite
References
- ↑ Sluis-Cremer N, Hamamouch N, San Félix A, Velazquez S, Balzarini J, Camarasa MJ (August 2006). "Structure-activity relationships of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]- 3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine derivatives as inhibitors of HIV-1 reverse transcriptase dimerization". J. Med. Chem. 49 (16): 4834–41. doi:10.1021/jm0604575. PMID 16884295.
- ↑ Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, Kalaitzidis D, Chandani S, Gilmore TD (February 2008). "Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347". Biochemical and Biophysical Research Communications 367 (1): 103–8. doi:10.1016/j.bbrc.2007.12.123. PMC 2277332. PMID 18164680.
See also
This article is issued from Wikipedia - version of the Thursday, September 24, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.