AGM-88 HARM
AGM-88 HARM[1] | |
---|---|
An AGM-88 HARM missile loaded aboard an F/A-18C | |
Type | Air-to-surface anti-radiation missile |
Place of origin | United States |
Service history | |
In service | 1985–present |
Used by | U.S. and others |
Wars | Gulf War, Kosovo War, Iraq War, 2011 military intervention in Libya |
Production history | |
Designer | Texas Instruments |
Designed | 1983 |
Manufacturer | Texas Instruments, then Raytheon Corporation |
Unit cost |
US$284,000 US$870,000 for AGM-88E[2] |
Produced | 1983–present |
Specifications | |
Weight | 355 kilograms (783 lb) |
Length | 4.1 metres (13 ft) |
Diameter | 254 millimetres (10.0 in) |
Warhead | WDU-21/B blast-fragmentation in a WAU-7/B warhead section, and later WDU-37/B blast-fragmentation warhead. |
Warhead weight | 66 kilograms (146 lb) |
Detonation mechanism | FMU-111/B laser proximity fuze |
| |
Engine | Thiokol SR113-TC-1 dual-thrust rocket engine |
Wingspan | 1.1 metres (3.6 ft) |
Propellant | Solid fuel |
Operational range | 150 kilometres; 92 miles (80 nmi)[3] |
Speed | 2,280 km/h (1,420 mph) |
Guidance system | Passive radar homing with home-on-jam, GPS/INS and millimeter wave active radar homing in E variant.[4] 500-20,000 MHz for AGM-88C |
Launch platform | F/A-18, F-4G, F-16, Tornado IDS, F-35 and others |
The AGM-88 High-speed Anti-Radiation Missile (HARM) is a tactical, air-to-surface missile designed to home in on electronic transmissions coming from surface-to-air radar systems. It was originally developed by Texas Instruments as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation when it purchased the defense production business of Texas Instruments.
Description
The AGM-88 can detect, attack and destroy a radar antenna or transmitter with minimal aircrew input. The proportional guidance system that homes in on enemy radar emissions has a fixed antenna and seeker head in the missile's nose. A smokeless, solid-propellant, booster-sustainer rocket motor propels the missile at speeds over Mach 2. HARM, a U.S. Navy-led program, was initially integrated onto the A-6E, A-7 and F/A-18 and later onto the EA-6B. RDT&E for use on the F-14 was begun, but not completed. The USAF introduced HARM on the F-4G Wild Weasel and later on specialized F-16s equipped with the HARM Targeting System (HTS).
History
Deployment
The HARM missile was approved for full production in March 1983, obtained initial operating capability (IOC) on the A-7E Corsair II in late 1983 and then deployed in late 1985 with VA-72 and VA-46 aboard the aircraft carrier USS America. In 1986 the first successful firing of the HARM from an EA-6B was performed by VAQ-131. It was soon used in combat—in March 1986 against a Libyan SA-5 site in the Gulf of Sidra, and then Operation Eldorado Canyon in April. HARM was used extensively by the United States Navy and the United States Air Force for Operation Desert Storm during the Gulf War of 1991.
During the Gulf War, the HARM was involved in a friendly fire incident when the pilot of an F-4G Wild Weasel escorting a B-52 bomber mistook the latter's tail gun radar for an Iraqi AAA site. (This was after the tail gunner of the B-52 had targeted the F-4G, mistaking it for an Iraqi MiG.) The F-4 pilot launched the missile and then saw that the target was the B-52, which was hit. It survived with shrapnel damage to the tail and no casualties. The B-52 was subsequently renamed In HARM's Way.[5]
"Magnum" is spoken over the radio to announce the launch of an AGM-88.[6] During the Gulf War, if an aircraft was illuminated by enemy radar a bogus "Magnum" call on the radio was often enough to convince the operators to power down.[7] This technique would also be employed in Serbia during air operations in 1999.
In 2013 President Obama offered the AGM-88 to Israel for the first time.[8]
AGM-88E AARGM
The newest upgrade, the AGM-88E Advanced Anti-Radiation Guided Missile (AARGM), features the latest software, enhanced capabilities intended to counter radar shutdown and passive radar using an additional active millimeter wave seeker. It was released in November 2010 and is a joint venture by the US Department of Defense and the Italian Ministry of Defense and is produced by Alliant Techsystems.
In November 2005, the Italian Ministry of Defense and the US Department of Defense signed a Memorandum of Agreement on the joint development of the AGM-88E AARGM missile. Italy was providing $20 million of developmental funding as well as several millions worth of material, equipment and related services. The Italian Air Force was expected to procure up to 250 missiles for its Tornado ECR aircraft. Thus flight test program was set to integrate the AARGM onto Tornado ECR's weapon system.
The Navy demonstrated the AARGM's capability during Initial Operational Test and Evaluation (IOT&E) in spring 2012 with live firing of 12 missiles. Aircrew and maintenance training with live missiles was completed in June.
Lot 1
"ATK Defense Electronics Systems in Woodland Hills, CA receives a $70.6 million firm-fixed-price contract for AARGM Full Rate Production Lot 1. ATK will convert 53 AGM-88B HARM missiles provided by the US government, turning them into 49 AGM-88E AARGM All-Up Rounds for the US Navy, and 4 missiles for Italy. ATK will also provide 23 AGM-88E Captive Air Training Missile systems for the US Navy, which have seekers but no rocket motors, along with all related supplies and services.
Work will be performed in Woodland Hills, CA (90%); various locations in Italy (8.1%); Ridgecrest, CA (1.7%), and Clearwater, FL (0.2%), and is expected to be complete in December 2012. This contract was not competitively procured pursuant to FAR 6.302-1. This contract combines purchases for the Navy ($65.0M / 92.06%) and the Government of Italy ($5.6M / 7.94%). US Naval Air Systems Command, Patuxent River, MD manages the contract (N00019-12-C-0113)"
Lot 2
The Navy authorized Full-Rate Production (FRP) of the AARGM in August 2012, with 72 missiles for the Navy and nine for the Italian Air Force to be delivered in 2013. A U.S. Marine Corps F/A-18 Hornet squadron will be the first forward-deployed unit with the AGM-88E.[9]
Lot 4
In September 2013, ATK delivered the 100th AARGM to the U.S. Navy. The AGM-88E program is on schedule and on budget, with Full Operational Capability (FOC) planned for September 2014.[10]
On September 3, 2015 U.S. Department of Defence noticed order to Alliant Techsystems Operations LLC, Defense Electronic Systems, California, for a $118,724,146 firm-fixed-price contract, to Full Rate Production Lot 4 procurement of the Advanced Anti-Radiation Guided Missile (AARGM) services for the U.S. Navy and the Governments of Australia and Italy, to include conversion of AGM-88B High-Speed Anti-Radiation Missiles to 142 AGM-88E All-Up-Rounds and 12 Captive Air Training Missiles, to include related supplies.[11]
It will be initially integrated onto the F/A-18C/D, F/A-18E/F, EA-18G, and Tornado ECR aircraft and later on the F-35.[12]
The Navy's FY 2016 budget included funding for an extended range AARGM-ER that utilizes the existing guidance system and warhead of the AGM-88E with a solid integrated rocket-ramjet for double the range. Development funding will last to 2020.[13]
In September 2015, the AGM-88E successfully hit a mobile ship target in a live-fire test, demonstrating the missile's ability to use anti-radiation homing and millimeter wave radar to detect, identify, locate, and engage moving targets.[14]
Operators
Current operators
- Australia: AGM-88E variant ordered; to be used on EA-18G Growlers.[15]
- Egypt
- Germany[16]
- Greece
- Israel
- Italy: AGM-88E variant.
- Kuwait
- Saudi Arabia
- Spain[16]
- Taiwan
- Morocco
- Turkey
- United Arab Emirates
- United States:
See also
References
- Notes
- ↑ "AGM-88 HARM (high-speed antiradiation missile) - Smart Weapons". Fas.org. Archived from the original on 10 February 2010. Retrieved 2010-02-16.
- ↑ AGM-88E AARGM / Advanced Anti-Radiation Guided Missile, HDAM
- ↑ Raytheon Company: Miniature Air Launched Decoy (MALD)
- ↑ AGM-88E Advanced Anti-Radiation Guided Missile | NAVAIR - U.S. Navy Naval Air Systems Command - Navy and Marine Corps Aviation Research, Development, Acquisition, Test and Eva...
- ↑ Lake, Jon (2004). B-52 Stratofortress Units in Operation Desert Storm (1 ed.). Oxford: Osprey. pp. 47–48. ISBN 1-84176-751-4.
- ↑ "Operational Brevity Words And Terminology". Fas.org. Retrieved 2010-02-16.
- ↑ Lambeth, Benjamin (2000). The Transformation of American Air Power. Ithaca: Cornell University Press. p. 112. ISBN 978-0-8014-3816-5.
- ↑ "Israel seeks $5B in U.S. loans to buy arms."
- ↑ Navy Approves Full Rate Production for New Anti-Radiation Missile - Strategicdefenseintelligence.com, August 30, 2012
- ↑ ATK Delivers 100th Advanced Anti-Radiation Guided Missile (AARGM) to U.S. Navy - PRNewswire.com, 17 September 2013
- ↑ http://www.defense-aerospace.com/articles-view/release/3/166560/alliant-wins-%24119m-order-for-aargm-anti_radar-missiles.html
- ↑ "ATK Awarded $55 Million Advanced Anti-Radiation Guided Missile Low Rate Initial Production...". Reuters. 2009-01-21. Retrieved 2011-07-13.
- ↑ F-35Cs Cut Back As U.S. Navy Invests In Standoff Weapons - Aviationweek.com, 3 February 2015
- ↑ U.S. Navy tests upgraded missile - Upi.com, 23 September 2015
- ↑ "AGM-88E AARGM Missile: No Place To Hide Down There". Defense Industry Daily. Retrieved 2013-11-25.
- 1 2 "Spain buying HARMs for use on EF-18". Defense Daily. 25 May 1990. Retrieved 8 August 2015 – via HighBeam Research. (subscription required (help)).
- ↑ "Harpoon Databases: AGM-88 HARM". Harpoon Da tabases. Retrieved 2013-11-25.
- Bibliography
- Bonds, Ray and David Miller. "AGM-88 HARM". Illustrated Directory of Modern American Weapons. Zenith Imprint, 2002. ISBN 0-7603-1346-6.
External links
Wikimedia Commons has media related to AGM-88 HARM. |
- AGM-88 data sheet (PDF format) from Raytheon
- Information on AGM-88 HARM from FAS
- AGM-88 HARM information by Globalsecurity.org
- AGM-88@Designation-Systems
- AGM-88 HARM by Carlo Kopp
|
|