6-cube
6-cube Hexeract | |
---|---|
Orthogonal projection inside Petrie polygon Orange vertices are doubled, and the center yellow has 4 vertices | |
Type | Regular 6-polytope |
Family | hypercube |
Schläfli symbol | {4,34} |
Coxeter-Dynkin diagram | |
5-faces | 12 {4,3,3,3} |
4-faces | 60 {4,3,3} |
Cells | 160 {4,3} |
Faces | 240 {4} |
Edges | 192 |
Vertices | 64 |
Vertex figure | 5-simplex |
Petrie polygon | dodecagon |
Coxeter group | B6, [34,4] |
Dual | 6-orthoplex |
Properties | convex |
In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.
It has Schläfli symbol {4,34}, being composed of 3 5-cubes around each 4-face. It can be called a hexeract, a portmanteau of tesseract (the 4-cube) with hex for six (dimensions) in Greek. It can also be called a regular dodeca-6-tope or dodecapeton, being a 6-dimensional polytope constructed from 12 regular facets.
Related polytopes
It is a part of an infinite family of polytopes, called hypercubes. The dual of a 6-cube can be called a 6-orthoplex, and is a part of the infinite family of cross-polytopes.
Applying an alternation operation, deleting alternating vertices of the 6-cube, creates another uniform polytope, called a 6-demicube, (part of an infinite family called demihypercubes), which has 12 5-demicube and 32 5-simplex facets.
Cartesian coordinates
Cartesian coordinates for the vertices of a 6-cube centered at the origin and edge length 2 are
- (±1,±1,±1,±1,±1,±1)
while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5) with -1 < xi < 1.
Images
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | Other | B3 | B2 |
Graph | |||
Dihedral symmetry | [2] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
3D Projections | |
6-cube 6D simple rotation through 2Pi with 6D perspective projection to 3D. |
Hexeract Quasicrystal structure orthographically projected to 3D using the Golden Ratio. |
Related polytopes
This polytope is one of 63 Uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
References
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n>=5)
- Richard Klitzing, 6D uniform polytopes (polypeta), o3o3o3o3o4x - ax
External links
- Weisstein, Eric W., "Hypercube", MathWorld.
- Olshevsky, George, Measure polytope at Glossary for Hyperspace.
- Multi-dimensional Glossary: hypercube Garrett Jones
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |