Heavy fermion superconductor

Heavy fermion superconductors are a type of unconventional superconductor.

The first heavy fermion superconductor, CeCu2Si2, was discovered by Frank Steglich in 1978.[1]

Since then over 30 heavy fermion superconductors were found (in materials based on Ce, U), with a critical temperature up to 2.3 K (in CeCoIn5).[2]

Material TC (K)
CeCu2Si2 0.7
CeCoIn5 2.3
CeIn3 0.2
UPt3 0.48
URu2Si2 1.3
UPd2Al3 2.0
UNi2Al3 1.1

Heavy Fermions are intermetallic compounds, containing rare earth or actinide elements. The f-electrons of these atoms hybridize with the normal conduction electrons leading to quasiparticles with an enhanced mass.

From specific heat measurements (ΔC/C(TC) one knows that the Cooper pairs in the superconducting state are also formed by the heavy quasiparticles.[3] In contrast to normal superconductors it cannot be described by BCS-Theory. Due to the large effective mass,[4] the Fermi velocity is reduced and comparable to the inverse Debye frequency. This leads to the failing of the picture of electrons polarizing the lattice as an attractive force.

Some heavy fermion superconductors are candidate materials for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase.[5] In particular there has been evidence that CeCoIn5 close to the critical field is in an FFLO state.[6]

References

  1. Steglich, F.; Aarts, J.; Bredl, C.D.; Lieke, W.; Meschede, D.; Franz, W.; Schäfer, H. (1979). "Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2". Physical Review Letters 43: 1892. Bibcode:1979PhRvL..43.1892S. doi:10.1103/PhysRevLett.43.1892.
  2. Petrovic, C.; Pagliuso, P.G.; Hundley, M.F.; Movshovich, R.; Sarrao, J.L.; Thompson, J.D.; Fisk, Z.; Monthoux, P. (2001). "Heavy-fermion superconductivity in CeCoIn5 at 2.3 K". Journal of Physics: Condensed Matter 13: L337. arXiv:cond-mat/0103168. Bibcode:2001JPCM...13L.337P. doi:10.1088/0953-8984/13/17/103.
  3. Neil W. Ashcroft and N. David Mermin, Solid State Physics
  4. Pfleiderer, C. (2009). "Superconducting phases of f -electron compounds". Review of Modern Physics 81: 1551. arXiv:0905.2625. Bibcode:2009RvMP...81.1551P. doi:10.1103/RevModPhys.81.1551.
  5. Matsuda, Yuji; Shimahara, Hiroshi (2007). "Fulde-Ferrell-Larkin-Ovchinnikov State in Heavy Fermion Superconductors". J. Phys. Soc. Jpn. 76: 051005. arXiv:cond-mat/0702481. Bibcode:2007JPSJ...76e1005M. doi:10.1143/JPSJ.76.051005.
  6. Bianchi, A.; Movshovich, R.; Capan, C.; Pagliuso, P.G.; Sarrao, J.L. (2003). "Possible Fulde-Ferrell-Larkin-Ovchinnikov State in CeCoIn5". Phys. Rev. Lett 91: 187004. arXiv:cond-mat/0304420. Bibcode:2003PhRvL..91r7004B. doi:10.1103/PhysRevLett.91.187004.
This article is issued from Wikipedia - version of the Friday, May 29, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.