HD 179821
HD 179821 | |
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Aquila |
Right ascension | 19h 13m 58.61s[1] |
Declination | +00° 07′ 31.9″[1] |
Apparent magnitude (V) | 8.19[2] (7.83 - 8.23[3]) |
Characteristics | |
Spectral type | G5Ia[4] |
Apparent magnitude (U) | 10.81[5] |
Apparent magnitude (B) | 9.694[2] |
Apparent magnitude (R) | 8.2[6] |
Apparent magnitude (J) | 5.371[6] |
Apparent magnitude (H) | 4.998[6] |
Apparent magnitude (K) | 4.728[6] |
B−V color index | +1.504[2] |
Variable type | SRD:[3] |
Astrometry | |
Radial velocity (Rv) | +82.0[7] km/s |
Proper motion (μ) | RA: 1.13[1] mas/yr Dec.: −4.30[1] mas/yr |
Parallax (π) | −1.20 ± 0.95[1] mas |
Absolute magnitude (MV) | −8.9[7] |
Details | |
Mass | 30[8] M☉ |
Luminosity | 310,000[8] L☉ |
Surface gravity (log g) | 0.5[7] cgs |
Temperature | 6,750[7] K |
Metallicity [Fe/H] | 0.0[7] dex |
Other designations | |
Database references | |
SIMBAD | data |
HD 179821 is a yellow supergiant star in the constellation of Aquila, surrounded by a detached dust shell. It is a semi-regular variable and either a moderate-mass post-AGB star or distant massive hypergiant.
Discovery
HD 179821 was first catalogued as an anonymous 8th magnitude star at the start of the 20th century.[9] It was later listed as a spectral standard G4 0-Ia, indicating a highly luminous star type now known as a hypergiant.[10]
It was first considered notable for its infrared excess and double-peaked Spectral energy distribution in the infrared.[11] These were considered to be indicators of surrounding dust and HD 179821 was identified as a possible proto-planetary nebula.[12] Variability was also detected.[13]
High resolution spectroscopic studies and modern space-based observations have revealed an unusual chemical makeup and a hollow spherical dust shell, but haven't fully resolved whether HD 179821 is a highly luminous yellow hypergiant or a more modest dying star.[8]
Observations
HD 179821 has a cold detached dust shell that has been studied with the help of the Hubble Space Telescope. The shell is approximately circular in shape, has an inner diameter of ~3".3 corresponding to 20,000 AU at 6,000 pc, and an outer diameter of 5".7 or more, with the star 0".35 from the centre of the shell. The current mass loss is low, but during the formation of the shell it is estimated to have been ×10−4 M⊙, an exceptionally high rate. 4[14] Like its constellation neighbor and also hypergiant star IRC+10420, it is surrounded by an extended reflection nebula. Discovered at near-IR wavelength, this indicates a massive star[15] and, as with the reflection nebula around IRC+10420, it may be masking a star hotter than the given G5 spectral type.[16]
It is that which contributes to a double-peaked spectral energy distribution.[17] It is estimated the star has lost about 10% of its initial mass after being a red supergiant star just 1,600 years ago,[14] and is a likely supernova candidate.[18]
The distance is estimated to be around 6,000 parsecs and has a high luminosity of between ×105 3.1[18] and ×105 L⊙. 6[19] It has a high radial velocity of km/s. +100[20] According to the studies of Jura et al (2001), the star may explode as a supernova in the next 100,000 years.
Chemical composition
The chemical composition of this star differs from that of other yellow supergiant stars. The star is moderately metal-deficient[15] and the main elements present in the star (apart from hydrogen and helium) are oxygen, carbon and nitrogen. Molecules such as hydrogen isocyanide, sulfur monoxide and HCO+ have been detected in the circumstellar envelope of the star. These molecules may result from an active photochemistry, generated by UV photons emitted by the central star as it warms up, or can be produced in shocks.[17]
Controversy
While most authors consider HD 179821 to be a supergiant star, others think it is actually a protoplanetary nebula or a post-AGB star at a distance of 1 kiloparsec (3,200 light years).[21] In that case the star's luminosity would be much lower, around 16,000 times that of our Sun and its initial mass would be equal to the current mass of our Sun.[8]
This discrepancy arises because its distance is too great to be measured by parallax and it has some properties of both a yellow hypergiant and a protoplanetary nebula/Post-AGB star.[7][8]
See also
References
- 1 2 3 4 5 Van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics 474 (2): 653. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357.
- 1 2 3 Høg, E.; Fabricius, C.; Makarov, V. V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics 355: L27. Bibcode:2000A&A...355L..27H.
- 1 2 Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/gcvs. Originally published in: 2009yCat....102025S 1. Bibcode:2009yCat....102025S.
- ↑ Klochkova, V. G. (1997). "Supergiants with large IR excesses". Bulletin of the Special Astrophysical Observatory 44: 5. Bibcode:1997BSAO...44....5K.
- ↑ Nordhaus, J.; Minchev, I.; Sargent, B.; Forrest, W.; Blackman, E. G.; De Marco, O.; Kastner, J.; Balick, B.; Frank, A. (2008). "Towards a spectral technique for determining material geometry around evolved stars: Application to HD 179821". Monthly Notices of the Royal Astronomical Society 388 (2): 716. arXiv:0801.2978. Bibcode:2008MNRAS.388..716N. doi:10.1111/j.1365-2966.2008.13428.x.
- 1 2 3 4 Cutri, R. M.; Skrutskie, M. F.; Van Dyk, S.; Beichman, C. A.; Carpenter, J. M.; Chester, T.; Cambresy, L.; Evans, T.; Fowler, J.; Gizis, J.; Howard, E.; Huchra, J.; Jarrett, T.; Kopan, E. L.; Kirkpatrick, J. D.; Light, R. M.; Marsh, K. A.; McCallon, H.; Schneider, S.; Stiening, R.; Sykes, M.; Weinberg, M.; Wheaton, W. A.; Wheelock, S.; Zacarias, N. (2003). "VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)". VizieR On-line Data Catalog: II/246. Originally published in: 2003yCat.2246....0C 2246. Bibcode:2003yCat.2246....0C.
- 1 2 3 4 5 6 Reddy, B. E.; Hrivnak, Bruce J. (April 1999). "Spectroscopic Study of HD 179821 (IRAS 19114+0002): Proto–Planetary Nebula or Supergiant?". The Astronomical Journal 117 (4): 1834–1844. Bibcode:1999AJ....117.1834R. doi:10.1086/300815.
- 1 2 3 4 5 Ferguson, Brian A.; Ueta, Toshiya (March 2010). "Differential Proper-motion Study of the Circumstellar Dust Shell of the Enigmatic Object, HD 179821". The Astrophysical Journal 711 (2): 613–618. arXiv:1001.3135. Bibcode:2010ApJ...711..613F. doi:10.1088/0004-637X/711/2/613.
- ↑ Cannon, Annie J.; Pickering, Edward C. (1918). "The Henry Draper catalogue 0h, 1h, 2h, and 3h". Annals of Harvard College Observatory 91: 1. Bibcode:1918AnHar..91....0C.
- ↑ Keenan, P. C.; Yorka, S. B. (1988). "1988 Revised MK Spectral Standards for Stars GO and Later". Bulletin d'Information du Centre de Donnees Stellaires 35: 37. Bibcode:1988BICDS..35...37K.
- ↑ Pottasch, S. R.; Parthasarathy, M. (1988). "The far-infrared (IRAS) excess in luminous F-G stars". Astronomy and Astrophysics (ISSN 0004-6361) 192: 182. Bibcode:1988A&A...192..182P.
- ↑ Hrivnak, Bruce J.; Kwok, Sun; Volk, Kevin M. (1989). "A study of several F and G supergiant-like stars with infrared excesses as candidates for proto-planetary nebulae". Astrophysical Journal 346: 265. Bibcode:1989ApJ...346..265H. doi:10.1086/168007.
- ↑ Arkhipova, V. P.; Ikonnikova, N. P.; Noskova, R. I. (1993). "The variability of four yellow supergiants - Possible protoplanetary objects". Astronomy Letters 19: 169. Bibcode:1993AstL...19..169A.
- 1 2 Jura, M.; Werner, M. W. (10 November 1999). "The Detached Dust Shell around the Massive Star HD 179821". The Astrophysical Journal 525 (2): L113–L116. Bibcode:1999ApJ...525L.113J. doi:10.1086/312344. PMID 10525467.
- 1 2 R. Szczerba; S.K. Górny (31 August 2001). Post-AGB Objects as a Phase of Stellar Evolution. Springer. pp. 315–. ISBN 978-0-7923-7145-8.
- ↑ Nordhaus, J.; Minchev, I.; Sargent, B.; Forrest, W.; Blackman, E. G.; De Marco, O.; Kastner, J.; Balick, B.; Frank, A. (August 2008). "Towards a spectral technique for determining material geometry around evolved stars: application to HD 179821". Monthly Notices of the Royal Astronomical Society 388 (2): 716–722. arXiv:0801.2978. Bibcode:2008MNRAS.388..716N. doi:10.1086/300815.
- 1 2 Josselin, E.; Lèbre, A. (2001). "Probing the post-AGB nature of HD 179821". Astronomy and Astrophysics 367 (3): 826. Bibcode:2001A&A...367..826J. doi:10.1051/0004-6361:20000496.
- 1 2 Jura, M.; Velusamy, T.; Werner, M. W. (20 July 2001). "What Next for the Likely Presupernova HD 179821?". The Astrophysical Journal 556 (1): 408–416. arXiv:astro-ph/0103282. Bibcode:2001ApJ...556..408J. doi:10.1086/321553.
- ↑ Teyssier, D.; Quintana-Lacaci, G.; Marston, A. P.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Soria-Ruiz, R.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (September 2012). "Herschel/HIFI observations of red supergiants and yellow hypergiants. I. Molecular inventory". Astronomy and Astrophysics 545: A99. arXiv:1208.3143. Bibcode:2012A&A...545A..99T. doi:10.1051/0004-6361/201219545. A99.
- ↑ Robert F. Wing (31 July 2000). The Carbon Star Phenomenon. Springer. pp. 231–. ISBN 978-0-7923-6346-0.
- ↑ Kipper, Tõnu (2008). "Optical Spectroscopy of a Post-AGB Star HD 179821 (V1427 Aql)". Baltic Astronomy 17: 87–102. Bibcode:2008BaltA..17...87K.
Further reading
Juraj Zverko; Jozef Ziznovsky; Saul J. Adelman; Werner W. Weiss (25 April 2005). The A-Star Puzzle (IAU S224). Cambridge University Press. pp. 390–. ISBN 978-0-521-85018-6.
Oudmaijer, R. D.; Davies, B.; De Wit, W.-J.; Patel, M. (2009). "Post-Red Supergiants". The Biggest 412: 17. arXiv:0801.2315. Bibcode:2009ASPC..412...17O.
|