Gustav Kirchhoff

Gustav Kirchhoff

Gustav Kirchhoff
Born Gustav Robert Kirchhoff
(1824-03-12)12 March 1824
Königsberg, Kingdom of Prussia
(present-day Russia)
Died 17 October 1887(1887-10-17) (aged 63)
Berlin, Prussia, German Empire
(present-day Germany)
Residence Prussia/German Empire
Nationality Prussian
Fields Physics
Chemistry
Institutions University of Berlin
University of Breslau
University of Heidelberg
Alma mater University of Königsberg
Doctoral advisor Franz Ernst Neumann
Otto Hesse
Notable students Loránd Eötvös
Edward Nichols
Gabriel Lippmann[1]
Dmitri Ivanovich Mendeleev
Max Planck
Jules Piccard
Max Noether
Heike Kamerlingh Onnes
Ernst Schröder
Known for Kirchhoff's circuit laws
Kirchhoff's law of thermal radiation
Kirchhoff's laws of spectroscopy
Kirchhoff's law of thermochemistry
Notable awards Rumford medal (1862)
Davy Medal (1877)
Matteucci Medal (1877)
Janssen Medal (1887)

Gustav Robert Kirchhoff (12 March 1824 – 17 October 1887) was a German physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy, and the emission of black-body radiation by heated objects.

He coined the term "black body" radiation in 1862, and two different sets of concepts (one in circuit theory, and one in spectroscopy) are named "Kirchhoff's laws" after him; there is also a Kirchhoff's Law in thermochemistry. The Bunsen–Kirchhoff Award for spectroscopy is named after him and his colleague, Robert Bunsen.

Life and work

Gustav Kirchhoff was born in Königsberg, East Prussia, the son of Friedrich Kirchhoff, a lawyer, and Johanna Henriette Wittke. He graduated from the Albertus University of Königsberg in 1847 where he attended the mathematico-physical seminar directed by Carl Gustav Jacob Jacobi,[2] Franz Ernst Neumann and Friedrich Julius Richelot. He married Clara Richelot, the daughter of his mathematics professor Richelot. In the same year, they moved to Berlin, where he stayed until he received a professorship at Breslau.

 Black-and-white image of two middle-aged men, either one leaning with one elbow on a wooden column in the middle. Both wear long jackets, and the shorter man on the left has a beard.
Gustav Kirchhoff (left) and Robert Bunsen (right)

Kirchhoff formulated his circuit laws, which are now ubiquitous in electrical engineering, in 1845, while still a student. He completed this study as a seminar exercise; it later became his doctoral dissertation. In 1857 he calculated that an electric signal in a resistanceless wire travels along the wire at the speed of light.[3] He proposed his law of thermal radiation in 1859, and gave a proof in 1861. He was called to the University of Heidelberg in 1854, where he collaborated in spectroscopic work with Robert Bunsen. Together Kirchhoff and Bunsen discovered caesium and rubidium in 1861. At Heidelberg he ran a mathematico-physical seminar, modelled on Neumann's, with the mathematician Leo Koenigsberger. Among those who attended this seminar were Arthur Schuster and Sofia Kovalevskaya. In 1875 Kirchhoff accepted the first chair specifically dedicated to theoretical physics at Berlin.

In 1862 he was awarded the Rumford Medal for his researches on the fixed lines of the solar spectrum, and on the inversion of the bright lines in the spectra of artificial light.

He contributed greatly to the field of spectroscopy by formalizing three laws that describe the spectral composition of light emitted by incandescent objects, building substantially on the discoveries of David Alter and Anders Jonas Ångström (see also: spectrum analysis).

He also contributed to optics, carefully solving Maxwell's equations to provide a solid foundation for Huygens' principle (and correct it in the process).[4]

In 1884 he became foreign member of the Royal Netherlands Academy of Arts and Sciences.[5]

Kirchhoff died in 1887, and was buried in the St Matthäus Kirchhof Cemetery in Schöneberg, Berlin (just a few meters from the graves of the Brothers Grimm).

Leopold Kronecker is buried in the same cemetery.

Kirchhoff's circuit laws

Further information: Kirchhoff's circuit laws

Kirchhoff's first law is that the algebraic sum of currents in a network of conductors meeting at a point (or node) is zero. The second law is that in a closed circuit, the directed sums of the voltages in a closed system is 0.

Kirchhoff's three laws of spectroscopy

  1. A hot solid object produces light with a continuous spectrum. Kirchhoff coined the term black-body radiation.
  2. A hot tenuous gas produces light with spectral lines at discrete wavelengths (i.e. specific colors) which depend on the energy levels of the atoms in the gas. (See also: emission spectrum)
  3. A hot solid object surrounded by a cool tenuous gas (i.e. cooler than the hot object) produces light with an almost continuous spectrum which has gaps at discrete wavelengths depending on the energy levels of the atoms in the gas. (See also: absorption spectrum)

Kirchhoff did not know about the existence of energy levels in atoms. The existence of discrete spectral lines was later explained by the Bohr model of the atom, which helped lead to quantum mechanics.

Kirchhoff's law of thermochemistry

Main article: Thermochemistry

Kirchhoff showed in 1858 that the variation of the heat of a chemical reaction is given by the difference in heat capacity between products and reactants: dΔH / dT = ΔCp. Integration of this equation permits the evaluation of the heat of reaction at one temperature from measurements at another temperature.[6][7]

See also

Spectroscope of Kirchhoff and Bunsen

Notes

  1. Physics Tree profile Gustav Robert Kirchhoff
  2. Hockey, Thomas (2009). "Kirchhoff, Gustav Robert". The Biographical Encyclopedia of Astronomers. Springer Publishing. ISBN 978-0-387-31022-0. Retrieved August 22, 2012.
  3. Graneau, P; Assis, AKT (1994). "Kirchhoff on the motion of electricity in conductors" (PDF). Apeiron 19: 19–25.
  4. D. Miller, "Huygens’s wave propagation principle corrected", Opt. Lett. 16, 1370–1372 (1991)
  5. "G.R. Kirchhoff (1824 - 1887)". Royal Netherlands Academy of Arts and Sciences. Retrieved 22 July 2015.
  6. Laidler K.J. and Meiser J.H., "Physical Chemistry" (Benjamin/Cummings 1982), p.62
  7. Atkins P. and de Paula J., "Atkins' Physical Chemistry" (8th edn, W.H. Freeman 2006), p.56

References

Further reading

External links


This article is issued from Wikipedia - version of the Friday, February 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.