Gummel–Poon model

Schematic of Spice Gummel-Poon Model NPN

The Gummel–Poon model is a model of the bipolar junction transistor. It was first described in a paper published by Hermann Gummel and H. C. Poon at Bell Labs in 1970.[1]

The Gummel–Poon model and modern variants of it are widely used via incorporation in the popular circuit simulators such as SPICE. A significant effect that the Gummel–Poon model accounts for is the variation of the transistors'  \beta_\mathrm{F} and  \beta_\mathrm{R} values with the direct current level. When certain parameters are omitted, the Gummel–Poon model reduces to the simpler Ebers–Moll model.[1]

Model parameters

Spice Gummel–Poon model parameters

#NameProperty
Modeled
ParameterUnitsDefault
Value
1IScurrenttransport saturation currentA1.00E-016
2BFcurrentideal max forward beta-100
3NFcurrentforward current emission coefficient-1
4VAFcurrentforward Early voltageVinf
5IKFcurrentcorner for forward beta high current roll-offAinf
6ISEcurrentB-E leakage saturation currentA0
7NEcurrentB-E leakage emission coefficient-1.5
8BRcurrentideal max reverse beta-1
9NRcurrentreverse current emission coefficient-1
10VARcurrentreverse Early voltageVinf
11IKRcurrentcorner for reverse beta high current roll-offAinf
12ISCcurrentB-C leakage saturation currentA0
13NCcurrentB-C leakage emission coefficient-2
14RBresistancezero-bias base resistanceohms0
15IRBresistancecurrent where base resistance falls half-way to its minimumAinf
16RBMresistanceminimum base resistance at high currentsohmsRB
17REresistanceemitter resistanceohms0
18RCresistancecollector resistanceohms0
19CJEcapacitanceB-E zero-bias depletion capacitanceF0
20VJEcapacitanceB-E built-in potentialV0.75
21MJEcapacitanceB-E junction exponential factor-0.33
22TFcapacitanceideal forward transit times0
23XTFcapacitancecoefficient for bias dependence of TF-0
24VTFcapacitancevoltage describing VBC dependence of TFVinf
25ITFcapacitancehigh-current parameter for effect on TFA0
26PTFexcess phase at freq=1.0/(TF*2PI) Hzdeg0
27CJCcapacitanceB-C zero-bias depletion capacitanceF0
28VJCcapacitanceB-C built-in potentialV0.75
29MJCcapacitanceB-C junction exponential factor-0.33
30XCJCcapacitancefraction of B-C depletion capacitance connected to internal base node-1
31TRcapacitanceideal reverse transit times0
32CJScapacitancezero-bias collector-substrate capacitanceF0
33VJScapacitancesubstrate junction built-in potentialV0.75
34MJScapacitancesubstrate junction exponential factor-0
35XTBforward and reverse beta temperature exponent-0
36EGenergy gap for temperature effect of ISeV1.1
37XTItemperature exponent for effect of IS-3
38KFflicker-noise coefficient-0
39AFflicker-noise exponent-1
40FCcoefficient for forward-bias depletion capacitance formula-0.5
41TNOMparameter measurement temperaturedeg.C27

[2]

References

  1. 1 2 H. K. Gummel and H. C. Poon, "An integral charge control model of bipolar transistors", Bell Syst. Tech. J., vol. 49, pp. 827–852, May–June 1970
  2. http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html Summary of model with schematics and equations

External links

This article is issued from Wikipedia - version of the Monday, September 07, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.