Functional electrical stimulation

Functional electrical stimulation (FES) is a technique that uses electrical currents to activate nerves innervating extremities affected by paralysis resulting from spinal cord injury (SCI), head injury, stroke and other neurological disorders. FES is primarily used to restore function in people with disabilities. It is sometimes referred to as neuromuscular electrical stimulation (NMES).[1]

Principles

Neurons are electrically active cells. The presence of an electric field in nervous tissue may lead to the depolarization of neural cell membranes and thereby induce firing of action potentials . FES devices take advantage of this property to electrically activate nerve cells, which then may go on to activate muscles or other nerves. However, special care must be taken in designing safe FES devices, as passing electric current through nervous tissue can lead to adverse effects such as decrease in excitability or cell death. This may be due to thermal damage , electroporation of the cell membrane , toxic products from electrochemical reactions at the electrode surface , or overexcitation of the target neurons . Typical stimulation protocols used in clinical FES involves trains of electric pulses. Biphasic, charged balanced pulses are employed as they improve the safety of electrical stimulation and minimize some of the adverse effects. Pulse width, charge per phase and frequency are the key parameters that define safety and effectiveness of FES . Furthermore, the polarity of a biphasic pulse, which can be either cathodic-first or anodic-first, affects the threshold for activation for nervous tissue . For peripheral nervous stimulation, cathodic-first pulses have lower thresholds, resulting in a more efficient charge delivery. For surface cortical simulation, where axons are perpendicular to the electrode surface, anodic first pulses are more efficient.[2]

History

FES was initially referred to as Functional Electrotherapy by Liberson,[3] and it was not until 1967 that the term Functional Electrical Stimulation was coined by Moe and Post,[4] and used in a patent entitled, "Electrical stimulation of muscle deprived of nervous control with a view of providing muscular contraction and producing a functionally useful moment".[5] Offner's patent described a system used to treat foot drop.

The first commercially available FES devices treated foot drop by stimulating the peroneal nerve during gait. In this case, a switch, located in the heel end of a user's shoe, would activate a stimulator worn by the user.

Common applications

Spinal cord Injury

Injuries to the spinal cord interfere with electrical signals between the brain and the muscles, resulting in paralysis below the level of injury. Restoration of limb function as well as regulation of organ function are the main application of FES, although FES is also used for treatment of pain, pressure, sore prevention, etc.

Some examples of FES applications involve the use of Neuroprostheses that allow the people with paraplegia to walk, stand, restore hand grasp function in people with quadriplegia, or restore bowel and bladder function.[6]

High intensity FES of the quadriceps muscles allows patients with complete lower motor neuron lesion to increase their muscle mass, muscle fiber diameter, improve ultrastructural organization of contractile material, increase of force output during electrical stimulation and perform FES assisted stand-up exercises.[7]

Stroke

FES is commonly used in foot drop neuroprosthetic devices.

In the acute stage of stroke recovery, the use of cyclic electrical stimulation has been seen to increase the isometric strength of wrist extensors. In order to increase strength of wrist extensors, there must be a degree of motor function at the wrist spared following the stroke and have significant hemiplegia. Patients who will elicit benefits of cyclic electrical stimulation of the wrist extensors must be highly motivated to follow through with treatment, After 8 weeks of electrical stimulation, an increase in grip strength can be apparent. Many scales, which assess the level of disability of the upper extremities following a stroke, use grip strength as a common item. Therefore, increasing strength of wrist extensors will decrease the level of upper extremity disability.

Patients with hemiplegia following a stroke commonly experience shoulder pain and subluxation; both of which will interfere with the rehabilitation process. Functional electrical stimulation has been found to be effective for the management of pain and reduction of shoulder subluxation, as well as accelerating the degree and rate of motor recovery. Furthermore, the benefits of FES are maintained over time; research has demonstrated that the benefits are maintained for at least 24 months.[8]

In popular culture

See also

References

  1. M. Claudia et al.,(2000), Artificial Grasping System for the Paralyzed Hand, International Society for Artificial Organs, Vol 24 No.3
  2. Dhillon, ed. Kenneth W. Horch; Gurpreet S. (2004). Neuroprosthetics : theory and practice (Reprint. ed.). New Jersey [u.a.]: World Scientific. p. 1076. ISBN 9812380221.
  3. Liberson, W. T.; Holmquest, H. J.; Scot, D.; Dow, M. (1961). "Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients". Archives of physical medicine and rehabilitation 42: 101–105. PMID 13761879.
  4. J. H. Moe and H. W. Post, “Functional electrical stimulation for ambulation in hemiplegia,” The Lancet, vol. 82, pp. 285–288, July 1962.
  5. Offner et al. (1965), Patent 3,344,792
  6. Pow–ell, Joanna; David Pandyan; Malcolm Granat; Margart Cameron; David Stott (1999). "Electrical Stimulation of Wrist Extensors in Poststroke Hemiplegia". Stroke: Journal of the American Heart Association 30 (7): 1384–1389. Retrieved 11 May 2011.
  7. Kern H, Carraro U, Adami N, Biral D, Hofer C, Forstner C, Mödlin M, Vogelauer M, Pond A, Boncompagni S, Paolini C, Mayr W, Protasi F, Zampieri S (2010). "Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion.". Neurorehabil Neural Repair 24 (8): 709–721. doi:10.1177/1545968310366129. PMID 20460493.
  8. Chantraine, Alex; Baribeault, Alain; Uebelhart, Daniel; Gremion, Gerald (1999). "Shoulder Pain and Dysfunction in Hemiplegia: Effects of Functional Electrical Stimulation". Archives of Physical Medicine and Rehabilitation 80: 328–331. doi:10.1016/s0003-9993(99)90146-6.
  9. "The Rap Sheet, "The Story Behind the Story: No Hard Feelings by Mark Coggins"". Retrieved February 10, 2016.


Further reading

    External links

    This article is issued from Wikipedia - version of the Wednesday, February 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.