Franklin graph

Franklin Graph

The Franklin Graph
Named after Philip Franklin
Vertices 12
Edges 18
Radius 3
Diameter 3
Girth 4
Automorphisms 48 (Z/2Z×S4)
Chromatic number 2
Chromatic index 3
Genus 1
Properties Cubic
Hamiltonian
Bipartite
Triangle-free
Perfect
Vertex-transitive

In the mathematical field of graph theory, the Franklin graph a 3-regular graph with 12 vertices and 18 edges.[1]

The Franklin graph is named after Philip Franklin, who disproved the Heawood conjecture on the number of colors needed when a two-dimensional surface is partitioned into cells by a graph embedding.[2][3] The Heawood conjecture implied that the maximum chromatic number of a map on the Klein bottle should be seven, but Franklin proved that in this case six colors always suffice. The Franklin graph can be embedded in the Klein bottle so that it forms a map requiring six colors, showing that six colors are sometimes necessary in this case. This embedding is the Petrie dual of its embedding in the projective plane shown below.

It is Hamiltonian and has chromatic number 2, chromatic index 3, radius 3, diameter 3 and girth 4. It is also a 3-vertex-connected and 3-edge-connected perfect graph.

Algebraic properties

The automorphism group of the Franklin graph is of order 48 and is isomorphic to Z/2Z×S4, the direct product of the cyclic group Z/2Z and the symmetric group S4. It acts transitively on the vertices of the graph, making it vertex-transitive.

The characteristic polynomial of the Franklin graph is

(x-3)(x-1)^{3}(x+1)^{3}(x+3)(x^{2}-3)^{2}.\

Gallery

Wikimedia Commons has media related to Franklin graph.

References

This article is issued from Wikipedia - version of the Saturday, July 18, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.