Feynman slash notation

In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation[1]). If A is a covariant vector (i.e., a 1-form),

A\!\!\!/\ \stackrel{\mathrm{def}}{=}\  \gamma^\mu A_\mu

using the Einstein summation notation where γ are the gamma matrices.

Identities

Using the anticommutators of the gamma matrices, one can show that for any a_\mu and b_\mu,

a\!\!\!/a\!\!\!/=a^\mu a_\mu\cdot I_{4\times 4}=a^2\cdot I_{4\times 4}
a\!\!\!/b\!\!\!/+b\!\!\!/a\!\!\!/ = 2 a \cdot b \cdot I_{4\times 4}\,.

where I_{4\times 4} is the identity matrix in four dimensions. In particular,

\partial\!\!\!/^2=\partial^2\cdot I_{4\times 4}.

Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,

\operatorname{tr}(a\!\!\!/b\!\!\!/) = 4 a \cdot b
\operatorname{tr}(a\!\!\!/b\!\!\!/c\!\!\!/d\!\!\!/) = 4 \left[(a\cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c) \right]
\operatorname{tr}(\gamma_5 a\!\!\!/b\!\!\!/c\!\!\!/d\!\!\!/) = 4 i \epsilon_{\mu \nu \lambda \sigma} a^\mu b^\nu c^\lambda d^\sigma
\gamma_\mu a\!\!\!/ \gamma^\mu = -2 a\!\!\!/ .
\gamma_\mu a\!\!\!/ b\!\!\!/ \gamma^\mu = 4 a \cdot b \cdot I_{4\times 4}\,
\gamma_\mu a\!\!\!/ b\!\!\!/ c\!\!\!/ \gamma^\mu = -2 c\!\!\!/ b\!\!\!/ a\!\!\!/ \,
where
\epsilon_{\mu \nu \lambda \sigma} \, is the Levi-Civita symbol.

With four-momentum

Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum:

using the Dirac basis for the \gamma\,'s,

\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix},\quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \,

as well as the definition of four momentum

 p_{\mu} = \left(E, -p_x, -p_y, -p_z \right) \,

We see explicitly that

\begin{align}
 p\!\!/ &= \gamma^\mu p_\mu = \gamma^0 p_0 + \gamma^i p_i \\
   &= \begin{bmatrix} p_0 & 0 \\ 0 & -p_0 \end{bmatrix} + \begin{bmatrix} 0 & \sigma^i p_i \\ - \sigma^i p_i & 0 \end{bmatrix} \\
   &= \begin{bmatrix} E & - \sigma \cdot \vec p \\ \sigma \cdot \vec p & -E \end{bmatrix} 
\end{align}

Similar results hold in other bases, such as the Weyl basis.

See also

References

  1. Weinberg, Steven (1995), The Quantum Theory of Fields 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7
  • Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. ISBN 0-471-88741-2. 
This article is issued from Wikipedia - version of the Thursday, February 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.